{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Análisis de datos con Pandas"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#Lista de archivos a utilizar\n",
"#https://www.footballdb.com/stats/penalties-player.html\n",
"#Num = Number of Penalties\n",
"#Yds = Yards Penalized\n",
"#FS = False Start\n",
"#HLD = Holding\n",
"#OFF = Offsides\n",
"#IC = Illegal Contact\n",
"#PI = Pass Interference\n",
"#RP = Roughing the Passer\n",
"#PF = Personal Foul\n",
"#UR = Unnecessary Roughness\n",
"#UC = Unsportsmanlike Conduct\n",
"\n",
"archivos = ['penalties_2015.xls',\n",
" 'penalties_2016.xls',\n",
" 'penalties_2017.xls',\n",
" 'penalties_2018.xls',\n",
" 'penalties_2019.xls']\n",
"folder = '../datos/nfl/penalties/'"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"#Para almacenar los datos se utilizará un\n",
"#diccionario d[AÑO] = DATAFRAME\n",
"\n",
"tablas = {}\n",
"years = ['2015', '2016', '2017', '2018', '2019']\n",
"\n",
"for arch, year in zip(archivos, years):\n",
" #Ruta del archivo\n",
" ruta = folder + arch\n",
" \n",
" #Abre archivo\n",
" dataframe = pd.read_excel(ruta)\n",
" \n",
" #Agrega columna Year al dataframe\n",
" dataframe['Year'] = year\n",
" \n",
" #Agrega al diccionario\n",
" tablas[year] = dataframe"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Player | \n",
" Pos | \n",
" Team | \n",
" Num | \n",
" Yds | \n",
" FS | \n",
" HLD | \n",
" OFF | \n",
" IC | \n",
" PI | \n",
" RP | \n",
" PF | \n",
" UR | \n",
" UC | \n",
" Other | \n",
" Year | \n",
"
\n",
" \n",
" \n",
" \n",
" 2015 | \n",
" 0 | \n",
" Brandon Browner (DB), NO | \n",
" DB | \n",
" NO | \n",
" 20 | \n",
" 202 | \n",
" 0 | \n",
" 8 | \n",
" 1 | \n",
" 1 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 4 | \n",
" 2015 | \n",
"
\n",
" \n",
" 1 | \n",
" Ndamukong Suh (DT), Mia | \n",
" DT | \n",
" Mia | \n",
" 14 | \n",
" 67 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 12 | \n",
" 2015 | \n",
"
\n",
" \n",
" 2 | \n",
" Dre Kirkpatrick (DB), Cin | \n",
" DB | \n",
" Cin | \n",
" 13 | \n",
" 118 | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 2 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 4 | \n",
" 2015 | \n",
"
\n",
" \n",
" 3 | \n",
" Greg Robinson (OT), Stl | \n",
" OT | \n",
" Stl | \n",
" 13 | \n",
" 114 | \n",
" 4 | \n",
" 8 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 2015 | \n",
"
\n",
" \n",
" 4 | \n",
" Jerry Hughes (DE), Buf | \n",
" DE | \n",
" Buf | \n",
" 13 | \n",
" 109 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 8 | \n",
" 2015 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 2019 | \n",
" 45 | \n",
" Jadeveon Clowney (DE), Sea | \n",
" DE | \n",
" Sea | \n",
" 8 | \n",
" 49 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 6 | \n",
" 2019 | \n",
"
\n",
" \n",
" 46 | \n",
" Jimmy Moreland (DB), Was | \n",
" DB | \n",
" Was | \n",
" 8 | \n",
" 48 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 2019 | \n",
"
\n",
" \n",
" 47 | \n",
" Michael Bennett (DE), Dal | \n",
" DE | \n",
" Dal | \n",
" 8 | \n",
" 36 | \n",
" 0 | \n",
" 0 | \n",
" 5 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 2019 | \n",
"
\n",
" \n",
" 48 | \n",
" Richard Sherman (DB), SF | \n",
" DB | \n",
" SF | \n",
" 7 | \n",
" 100 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 2019 | \n",
"
\n",
" \n",
" 49 | \n",
" Darryl Roberts (DB), NYJ | \n",
" DB | \n",
" NYJ | \n",
" 7 | \n",
" 89 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 2019 | \n",
"
\n",
" \n",
"
\n",
"
250 rows × 16 columns
\n",
"
"
],
"text/plain": [
" Player Pos Team Num Yds FS HLD OFF IC PI \\\n",
"2015 0 Brandon Browner (DB), NO DB NO 20 202 0 8 1 1 3 \n",
" 1 Ndamukong Suh (DT), Mia DT Mia 14 67 0 1 1 0 0 \n",
" 2 Dre Kirkpatrick (DB), Cin DB Cin 13 118 0 4 0 2 3 \n",
" 3 Greg Robinson (OT), Stl OT Stl 13 114 4 8 0 0 0 \n",
" 4 Jerry Hughes (DE), Buf DE Buf 13 109 0 0 1 0 0 \n",
"... ... .. ... ... ... .. ... ... .. .. \n",
"2019 45 Jadeveon Clowney (DE), Sea DE Sea 8 49 0 0 1 0 0 \n",
" 46 Jimmy Moreland (DB), Was DB Was 8 48 0 3 0 1 1 \n",
" 47 Michael Bennett (DE), Dal DE Dal 8 36 0 0 5 0 0 \n",
" 48 Richard Sherman (DB), SF DB SF 7 100 0 2 0 0 4 \n",
" 49 Darryl Roberts (DB), NYJ DB NYJ 7 89 0 2 0 0 3 \n",
"\n",
" RP PF UR UC Other Year \n",
"2015 0 0 0 3 0 4 2015 \n",
" 1 0 0 0 0 12 2015 \n",
" 2 0 0 0 0 4 2015 \n",
" 3 0 0 0 0 1 2015 \n",
" 4 1 0 3 0 8 2015 \n",
"... .. .. .. .. ... ... \n",
"2019 45 1 0 0 0 6 2019 \n",
" 46 0 0 0 0 3 2019 \n",
" 47 0 0 0 0 3 2019 \n",
" 48 0 0 1 0 0 2019 \n",
" 49 0 0 0 0 2 2019 \n",
"\n",
"[250 rows x 16 columns]"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Concatenamos tablas\n",
"df_penal = pd.concat(tablas)\n",
"df_penal\n",
"#MULTI-INDEX\n",
"#df_penal.loc[ ('2015', 0) ]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Player | \n",
" Pos | \n",
" Team | \n",
" Num | \n",
" Yds | \n",
" FS | \n",
" HLD | \n",
" OFF | \n",
" IC | \n",
" PI | \n",
" RP | \n",
" PF | \n",
" UR | \n",
" UC | \n",
" Other | \n",
" Year | \n",
"
\n",
" \n",
" \n",
" \n",
" 2015 | \n",
" 0 | \n",
" Brandon Browner | \n",
" DB | \n",
" NO | \n",
" 20 | \n",
" 202 | \n",
" 0 | \n",
" 8 | \n",
" 1 | \n",
" 1 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 4 | \n",
" 2015 | \n",
"
\n",
" \n",
" 1 | \n",
" Ndamukong Suh | \n",
" DT | \n",
" Mia | \n",
" 14 | \n",
" 67 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 12 | \n",
" 2015 | \n",
"
\n",
" \n",
" 2 | \n",
" Dre Kirkpatrick | \n",
" DB | \n",
" Cin | \n",
" 13 | \n",
" 118 | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 2 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 4 | \n",
" 2015 | \n",
"
\n",
" \n",
" 3 | \n",
" Greg Robinson | \n",
" OT | \n",
" Stl | \n",
" 13 | \n",
" 114 | \n",
" 4 | \n",
" 8 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 2015 | \n",
"
\n",
" \n",
" 4 | \n",
" Jerry Hughes | \n",
" DE | \n",
" Buf | \n",
" 13 | \n",
" 109 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 8 | \n",
" 2015 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 2019 | \n",
" 45 | \n",
" Jadeveon Clowney | \n",
" DE | \n",
" Sea | \n",
" 8 | \n",
" 49 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 6 | \n",
" 2019 | \n",
"
\n",
" \n",
" 46 | \n",
" Jimmy Moreland | \n",
" DB | \n",
" Was | \n",
" 8 | \n",
" 48 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 2019 | \n",
"
\n",
" \n",
" 47 | \n",
" Michael Bennett | \n",
" DE | \n",
" Dal | \n",
" 8 | \n",
" 36 | \n",
" 0 | \n",
" 0 | \n",
" 5 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 2019 | \n",
"
\n",
" \n",
" 48 | \n",
" Richard Sherman | \n",
" DB | \n",
" SF | \n",
" 7 | \n",
" 100 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 2019 | \n",
"
\n",
" \n",
" 49 | \n",
" Darryl Roberts | \n",
" DB | \n",
" NYJ | \n",
" 7 | \n",
" 89 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 2019 | \n",
"
\n",
" \n",
"
\n",
"
250 rows × 16 columns
\n",
"
"
],
"text/plain": [
" Player Pos Team Num Yds FS HLD OFF IC PI RP PF \\\n",
"2015 0 Brandon Browner DB NO 20 202 0 8 1 1 3 0 0 \n",
" 1 Ndamukong Suh DT Mia 14 67 0 1 1 0 0 0 0 \n",
" 2 Dre Kirkpatrick DB Cin 13 118 0 4 0 2 3 0 0 \n",
" 3 Greg Robinson OT Stl 13 114 4 8 0 0 0 0 0 \n",
" 4 Jerry Hughes DE Buf 13 109 0 0 1 0 0 1 0 \n",
"... ... .. ... ... ... .. ... ... .. .. .. .. \n",
"2019 45 Jadeveon Clowney DE Sea 8 49 0 0 1 0 0 1 0 \n",
" 46 Jimmy Moreland DB Was 8 48 0 3 0 1 1 0 0 \n",
" 47 Michael Bennett DE Dal 8 36 0 0 5 0 0 0 0 \n",
" 48 Richard Sherman DB SF 7 100 0 2 0 0 4 0 0 \n",
" 49 Darryl Roberts DB NYJ 7 89 0 2 0 0 3 0 0 \n",
"\n",
" UR UC Other Year \n",
"2015 0 3 0 4 2015 \n",
" 1 0 0 12 2015 \n",
" 2 0 0 4 2015 \n",
" 3 0 0 1 2015 \n",
" 4 3 0 8 2015 \n",
"... .. .. ... ... \n",
"2019 45 0 0 6 2019 \n",
" 46 0 0 3 2019 \n",
" 47 0 0 3 2019 \n",
" 48 1 0 0 2019 \n",
" 49 0 0 2 2019 \n",
"\n",
"[250 rows x 16 columns]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Ya que la columna Player\n",
"#contiene información que también\n",
"#se encuentra en Pos y Team\n",
"#resulta conveniente limpiarla\n",
"def limpia_player(obs):\n",
" '''\n",
" obs es una observación\n",
" de la columna Player\n",
" '''\n",
" \n",
" #Hace split del string\n",
" spl = obs.split(' ')\n",
" nombre = spl[0]\n",
" apellido = spl[1]\n",
" \n",
" return nombre + ' ' + apellido\n",
" \n",
"df_penal['Player'] = df_penal['Player'].apply(limpia_player)\n",
"df_penal"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" | \n",
" Player | \n",
" Pos | \n",
" Team | \n",
" Num | \n",
" Yds | \n",
" FS | \n",
" HLD | \n",
" OFF | \n",
" IC | \n",
" PI | \n",
" RP | \n",
" PF | \n",
" UR | \n",
" UC | \n",
" Other | \n",
" Year | \n",
"
\n",
" \n",
" \n",
" \n",
" 2015 | \n",
" 0 | \n",
" Brandon Browner | \n",
" DB | \n",
" New Orleans Saints | \n",
" 20 | \n",
" 202 | \n",
" 0 | \n",
" 8 | \n",
" 1 | \n",
" 1 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 4 | \n",
" 2015 | \n",
"
\n",
" \n",
" 1 | \n",
" Ndamukong Suh | \n",
" DT | \n",
" Miami Dolphins | \n",
" 14 | \n",
" 67 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 12 | \n",
" 2015 | \n",
"
\n",
" \n",
" 2 | \n",
" Dre Kirkpatrick | \n",
" DB | \n",
" Cincinnati Bengals | \n",
" 13 | \n",
" 118 | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 2 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 4 | \n",
" 2015 | \n",
"
\n",
" \n",
" 3 | \n",
" Greg Robinson | \n",
" OT | \n",
" Saint Louis Rams | \n",
" 13 | \n",
" 114 | \n",
" 4 | \n",
" 8 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 2015 | \n",
"
\n",
" \n",
" 4 | \n",
" Jerry Hughes | \n",
" DE | \n",
" Buffalo Bills | \n",
" 13 | \n",
" 109 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 8 | \n",
" 2015 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 2019 | \n",
" 45 | \n",
" Jadeveon Clowney | \n",
" DE | \n",
" Seattle Seahawks | \n",
" 8 | \n",
" 49 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 6 | \n",
" 2019 | \n",
"
\n",
" \n",
" 46 | \n",
" Jimmy Moreland | \n",
" DB | \n",
" Washington Redskins | \n",
" 8 | \n",
" 48 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 2019 | \n",
"
\n",
" \n",
" 47 | \n",
" Michael Bennett | \n",
" DE | \n",
" Dallas Cowboys | \n",
" 8 | \n",
" 36 | \n",
" 0 | \n",
" 0 | \n",
" 5 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 2019 | \n",
"
\n",
" \n",
" 48 | \n",
" Richard Sherman | \n",
" DB | \n",
" San Francisco 49ers | \n",
" 7 | \n",
" 100 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 2019 | \n",
"
\n",
" \n",
" 49 | \n",
" Darryl Roberts | \n",
" DB | \n",
" New York Jets | \n",
" 7 | \n",
" 89 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 2019 | \n",
"
\n",
" \n",
"
\n",
"
250 rows × 16 columns
\n",
"
"
],
"text/plain": [
" Player Pos Team Num Yds FS HLD OFF \\\n",
"2015 0 Brandon Browner DB New Orleans Saints 20 202 0 8 1 \n",
" 1 Ndamukong Suh DT Miami Dolphins 14 67 0 1 1 \n",
" 2 Dre Kirkpatrick DB Cincinnati Bengals 13 118 0 4 0 \n",
" 3 Greg Robinson OT Saint Louis Rams 13 114 4 8 0 \n",
" 4 Jerry Hughes DE Buffalo Bills 13 109 0 0 1 \n",
"... ... .. ... ... ... .. ... ... \n",
"2019 45 Jadeveon Clowney DE Seattle Seahawks 8 49 0 0 1 \n",
" 46 Jimmy Moreland DB Washington Redskins 8 48 0 3 0 \n",
" 47 Michael Bennett DE Dallas Cowboys 8 36 0 0 5 \n",
" 48 Richard Sherman DB San Francisco 49ers 7 100 0 2 0 \n",
" 49 Darryl Roberts DB New York Jets 7 89 0 2 0 \n",
"\n",
" IC PI RP PF UR UC Other Year \n",
"2015 0 1 3 0 0 3 0 4 2015 \n",
" 1 0 0 0 0 0 0 12 2015 \n",
" 2 2 3 0 0 0 0 4 2015 \n",
" 3 0 0 0 0 0 0 1 2015 \n",
" 4 0 0 1 0 3 0 8 2015 \n",
"... .. .. .. .. .. .. ... ... \n",
"2019 45 0 0 1 0 0 0 6 2019 \n",
" 46 1 1 0 0 0 0 3 2019 \n",
" 47 0 0 0 0 0 0 3 2019 \n",
" 48 0 4 0 0 1 0 0 2019 \n",
" 49 0 3 0 0 0 0 2 2019 \n",
"\n",
"[250 rows x 16 columns]"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Cambiar columna Team\n",
"#por el nombre del equipo\n",
"codigos = pd.read_csv('../datos/nfl/team_codes.csv')\n",
"def cambia_team(team):\n",
" nombre = codigos[codigos['Code'] == team.upper()]['Name'].values\n",
" if len(nombre) != 0:\n",
" nombre = nombre[0].strip()\n",
" else:\n",
" nombre = team\n",
" return nombre\n",
"\n",
"df_penal['Team'] = df_penal['Team'].apply(cambia_team)\n",
"df_penal"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Player\n",
"Greg Robinson 41\n",
"Taylor Lewan 38\n",
"Germain Ifedi 38\n",
"Donovan Smith 34\n",
"Jadeveon Clowney 34\n",
" ..\n",
"Wes Schweitzer 7\n",
"Johnny Holton 7\n",
"Prince Amukamara 7\n",
"Morris Claiborne 7\n",
"Ahkello Witherspoon 7\n",
"Name: Num, Length: 181, dtype: int64"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Que jugador ha cometido\n",
"#el mayor número de faltas\n",
"#Se agrupan datos por la columna Player\n",
"gr_jugador = df_penal.groupby('Player')\n",
"df_jugador = gr_jugador.sum()['Num']\n",
"\n",
"#Para un objeto Series\n",
"#No es necesario especificar\n",
"#La columna por la que se ordenan\n",
"#sus valores\n",
"df_jugador = df_jugador.sort_values(ascending = False)\n",
"df_jugador"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAEGCAYAAAD11pvPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3debhVZd3/8fcnJHFEc4qcSEPNAVGGS1MRTf1ZmUNaaGpOOeWQ9lia9pTDU2r25JCp4ZDoA2qaGg4JDiDkxAwHHLIAzSGxVHJARfz+/rjvLZvDPvvMe+/D/ryui+vsvfYavnuVfLnvtc76KCIwMzOrJ5+qdgFmZmaV5uZnZmZ1x83PzMzqjpufmZnVHTc/MzOrOytUuwBr3tprrx29e/eudhlmZl3KlClT/hUR65T6zM2vC+jduzeTJ0+udhlmZl2KpBea+szTnmZmVnfc/MzMrO64+ZmZWd1x8zMzs7rj5mdmZnXHzc/MzOqOm5+ZmdUdNz8zM6s7/iX3LqDh5QX0Puu+apdhZlZR8y76Wqft2yM/MzOrO25+ZmZWd9z8zMys7lSs+UlaT9JISXMkTZH0hKQDOulY50p6WdJ0SU9LOqQF24yTNKDE8n0lndUZdZqZWXVUpPlJEnA3MD4iNomI/sDBwAYl1u2om3AujYh+wH7A7yR1b8tOImJURFzUQTWZmVkNqNTIb3fgw4i4prAgIl6IiN8ASDpS0u2S7gHG5GU/lDRJ0kxJ5xW2k/Tfkp6V9KCkWySdUe7AEfE88B6wZt6+n6Qn837vkrRm0eqHSXpc0ixJg4pquzK/vlHSFXmdOZIOyst7SRqfR5qzJO2Slx8iqSEvu7joO7wj6eeSZuRa1mvHuTUzs1aqVPPbCpjazDo7AkdExO6S9gL6AIOAfkB/SYPztOSBwHbAN4Blpikbk7Q98HxEzM+LbgLOjIi+QAPws6LVV4mILwHfA25oYpe9gJ2BfYDCiPDbwOg80twWmC7pc8DFpMbfDxgoaf/CcYAnI2JbYDxwbHPfw8zMOk5Vfs9P0m9JDeTDiBiYFz8YEW/k13vlP9Py+1VJzXA14E8RsTDv554yhzld0rHAJsDeef2ewBoR8WheZzhwe9E2twBExHhJq0tao8R+746Ij4Gni0Zsk4Ab8tTq3RExXdLuwLiIeD0fewQwmDT9+yFwb952CrBniXN0HHAcQLfVSwYRm5lZG1Vq5Dcb2L7wJiJOAr4MFP+t/m7RawEXRkS//OcLEXF9Xt5Sl0bE5sBQ4CZJPVqwTTTzHuCDRnUSEeNJje1l4GZJ32mm1kURUdj3Ykr8IyQihkXEgIgY0G3lni0o3czMWqpSze8RoIekE4uWrVxm/dHA0ZJWBZC0vqR1gb8AX5fUI3/W7K//R8SdwGTSlOoC4M3CNTngcODRotWH5uPtDCzI6zdL0sbA/Ii4Frie1OifAnaVtLakbsAhjY5lZmZVUpFpz4iIfL3rUkk/Al4njfTObGL9MZK+CDyRbhTlHeCwiJgkaRQwA3iB1NRa0qDOB0ZKuhY4ArhG0srAHOCoovXelPQ4sDpwdCu+4hDgh5IW5Vq/ExGvSvoxMJY0Crw/Iv7Uin2amVkn0ZLZt65B0qoR8U5uXuOB4yKiuZtpurQVe/WJXkdcVu0yzMwqqr3P9pQ0JSJK3hjZFR9sPUzSlkAPYPjy3vjMzKzjdbnmFxHfrnYNZmbWtXW55lePtlm/J5M7MdrDzKze+MHWZmZWd9z8zMys7rj5mZlZ3fE1vy6g4eUF9D7rvmqXYWa2jPb+OkK1eORnZmZ1x83PzMzqjpufmZnVnapf85O0FvBwfvtZUsrB6/n9oIj4sIX7WQH4V0SUiiFqaS0vAVtHxFtt3YeZmdW+qje/iPg3KewVSecC70TErzr7uJJWiIiPOvs4ZmZWe2p62lPSPZKmSJot6bt52fGSLila50RJv2y03ack/VrSLEkNkg7Ky/eQ9JCkW1kSlNtcDatKulHSREnTJH09Lx+TnzFKPsbZ+fWFko7MYbiPSJoqaaakffLnX8h1XZ+/159bmDVoZmYdpOojv2YcERFv5ASHyZL+CIwEpkv6cR65HQUc2Wi7bwJbAtuSAnMnSRqfP9sB2DIiXmxhDT8FHoiIIyWtCTwl6UFSosQukl4F3icl05N/XgcsBPaLiLdzFuFjLElv3xw4JCIaJN0J7A/cWnxQJ7mbmXWemh75AadLmgE8AWwAbBoRb5Maz1ckbQUsjoinG223MzAyIhZHxD9JIbiFWIsnWtH4APYCzpE0nZTN1wPYCJhASm/fBfgTsGZu0utHxN9JGX4XS5oJjAE2lLR23uffIqIhv54C9G58UCe5m5l1npod+Unag9RcdoiIhZL+Qmo8kEZWPwDmAb8vtXmZXb/b2lKA/XNDK67vxVzHK8A9pOZ8LDAxr/IdoCewfUR8lG+mKdT/QdGuFlPD/zuYmS2Pannk1xN4Ize+rYCBhQ8i4jFgU9L05m0lth0PHCypm6T1gJ1Iqe9tMRo4tfBG0na5hveB10hTlk+RRoJn5J+F+ufnxrcnsH4bj29mZh2slkcc9wHH5WnPZ0kNptgdwBYRsaDEtneQru3NAAL4QUTMl8oNCD8xW1Ih3n4kcB5wmaQG0j8W/gbslz+fAOwUER9ImkAa/RWa383APZImA1OB51tycDMz63yKiObXqkGSHgAujIhHq11LZ1uxV5/odcRl1S7DzGwZtfxsT0lTImJAqc9qedqzJElrSfor8GY9ND4zM+t4tTztWVL+pfjNql1HJTnJ3cysY3W5kZ+ZmVl7ufmZmVndcfMzM7O60+Wu+dUjJ7mbWa2q5bs9y/HIz8zM6o6bn5mZ1R03PzMzqztVbX6S1pM0UtKcnNv3hKQDKlzDAElXtHKbeYWEBkmnSnpG0ohWbD9O0oD8+n5JbU6fNzOz1qvaDS9KD9q8GxgeEd/OyzYG9m3FPrpFxOL21BERk2n7Q68Bvgd8JSLmtvH4X23Hsc3MrA2qOfLbHfgwIq4pLIiIFyLiN5Aam6RLJE3KSejH5+VDJI2VNBJokNRb0rOSrssJ6SNyYvtjkp6XNChvN0jS4zmN/XFJmxft7978+lxJN+SR2RxJpzYuupika4BNgFGSTpe0St5+Uj7Ofnm9lSTdmr/HbcBKRfv4ZBRpZmaVUc1fddiKlHbQlGOABRExUNKKwGOSxuTPBgFbR8RcSb2BL5DijY4DJgHfJgXa7gucTYodehYYnCOG9gB+ARxY4rhbALsBqwHPSbo6IhaVKjAiTpC0N7BbRPxL0i+ARyLi6DyVOVHSQ8DxwHsR0VdS32a+N+AkdzOzzlQzv+cn6bekhvVhRAwkJaj3lXRQXqUn0Af4EJjYaJpxbiEZXdJs4OGIiBxD1Lto++GS+pBijro3Ucp9EfEB8IGk+cB6wEst/Bp7AftKOiO/L6S+DwauAIiImTndvayIGAYMg5Tq0MLjm5lZC1Sz+c2maOQVESfl6b/C9TcBp0TE6OKNJA1h2TT24mT0j4vef8yS73gBMDYiDsijxXFN1NWelHUBB0bEc41qhtRwzcysBlTzmt8jQA9JJxYtW7no9WjgREndASRtJmmVdhyvJ/Byfn1kO/ZTzmjglHwzzyep76Rk+UPzsq2Bvp10fDMza4GqNb9IKbr7A7tKmitpIjAcODOvch3wNDBV0izgd7RvpPpL4EJJjwHd2rGfci4gTafOzDVfkJdfDayapzt/BEzspOObmVkLdNkk93riJHczq1W1/GzP5SrJ3czMrL1q5m5Pa5qT3M3MOpZHfmZmVnfc/MzMrO64+ZmZWd3xNb8uwEnuZlZOLd9xWas88jMzs7rj5mdmZnXHzc/MzOpOpzY/SYslTZc0W9IMST+Q1CUabk6ZvzfX/bSk+1u5/QmSvpNfHynpc0WfOcPPzKyKOvuGl4UR0Q9A0rrASNIDpn/WycftCOcDD0bE5QA5h6/FikN6SQ/SngW80mHVmZlZm1VsFBYR80nhrCcr6SHp95Iacur5bvDJKOlOSQ/kJPZfFvYh6ZC8/ixJF+dlJzZa50hJhTT4uyVNySPP44rWeUfSz/Oo7klJ65UouRdFOX4RMTNvO0TSo5L+IOmvki6SdKikibm2TfN650o6I+cRDgBG5FFwIcX9FElT8zZbdMhJNjOzFqnoFGREzMnHXBc4KS/bBjiEFDTbI6/aDxgKbAMMlbRhnja8GNg9fz5Q0v7AHcA3ig4zFLgtvz46IvqTms+pktbKy1cBnoyIbUlxQ8eWKPe3wPWSxko6p3jaEtgW+H6u73Bgs4gYREqiOKXRd76DlFF4aET0i4iF+aN/RcT2pMSHM2hE0nGSJkuavPi9BSXKMzOztqrG9TflnzsDNwNExLPAC8Bm+bOHI2JBRLxPijXaGBgIjIuI1yPiI2AEMDgiXgfmSNohN7fNgcfyfk6VNAN4EtiQlAQPKQ3+3vx6CkvS3j+RQ3Q3Aa4FtgCmSVonfzwpIl7Nie9/B8bk5Q2l9tWEO5s5/rCIGBARA7qt3LOFuzQzs5ao6C+5S9qElI4+nyVNsJRSaerl1r8N+BbwLHBXREROfN8D2DEi3pM0DiiMLBfFkiynJtPaI+IN0nXKkZLuBQYD/6ZlyfHNKWzT2rR4MzNrp4qN/PKo6Rrgytx4itPNNwM2Ap4rs4unSMG3a0vqRpoqfTR/dicpGPcQlkx59gTezI1vC2CHVta7u6SV8+vVgE2BF1uzjyJvA6u1cVszM+tgnT3iWEnSdFK6+Uekac5f58+uAq6R1JA/OzIiPpBKD/Ai4lVJPwbGkkaB90fEn/Jnb0p6GtgyIgop6Q8AJ+T09OdIU5+t0R+4UtJHpH8kXBcRk/KIsrVuJH3XhcCObdjezMw6kJPcuwAnuZtZOX62Z2lOcjczMyvi5mdmZnXHdxl2Adus35PJntYwM+swHvmZmVndcfMzM7O642nPLsBJ7mZWju/2bD2P/MzMrO64+ZmZWd1x8zMzs7rj5mdmZnWnRc1P0jst3WEhxLXtJXU8SZ+VdKukv0t6WtL9kjaT1FvSrGrXZ2ZmlbXc3+2p9KTsu4DhEXFwXtYPWA/4RzVrMzOz6mjxtKekVSU9LGmqpAZJ+xV9do6k5yQ9RAqTLSzfVNIDkqZImiBpC0k9Jc2T9Km8zsqS/iGpe6n18zob52PPzD83ystvlHSFpMclzZF0UInSdyPl911TWBAR0yNiQqPv10PS7/N3myZpt7z8fkl98+tpkn6aX18g6buShkgaJ+kOSc9KGpEbLpL6S3o0f5/Rknrl7zi16Lh9JE1p6f8OZmbWfq255vc+cEBEbE9qKP+rpD9wMLAd8A1S4nrBMOCUiOgPnAFcFRELgBnArnmdrwOjI2JRqfXzOlcCN0VEX1KC+xVFx+hFSoXfB7ioRN1bk9LSm3MSQERsQ8oFHC6pByl3cBdJq5Oil3bK6+8MFBrodsBpwJak9PedJHUHfgMclL/PDcDPI+LvwII8+gQ4ihR5tBRJx0maLGny4vcWtKB8MzNrqdZMewr4haTBpMTy9UlTh7uQ0tPfA5A0Kv9cFfgScHtRRt+K+edtwFBSNt/BwFXNrL8jqbFCygT8ZVFdd0fEx8DTktZrxfdpbGdSsyIinpX0ArAZqcGdCswF7gP2zCG3vSPiOUm9gIkR8VL+3tOB3sBbpMb7YP4+3YBX87GuA46S9IN8HgY1LiYihpH+McCKvfo4d8rMrAO1pvkdCqwD9I+IRZLmAT3yZ6X+cv4U8FZE9Cvx2SjgQkmfIYXGPgKsUmb9xoqP90HR61JJuLOBUtOhjZVO0YVJwABgDvAgsDZwLEuPJotrWEw6rwJmR0Sp8No/Aj8jfe8pEfHvFtRnZmYdpDXTnj2B+bnx7QZsnJePBw6QtJKk1UjTmETEf4C5kr4J6cYTSdvmz94BJgKXA/dGxOJy6wOPk0aIkJrwX1pR9yPAipKOLSyQNFDSro3WG5/3jaTNgI2A5yLiQ9KNMd8ipcFPIE3JTqC854B1JO2Y99ld0lb5+78PjAauBn7fiu9iZmYdoNnmJ2kF0shmBDBA0mRSk3gWICKmkqYxp5NGNMVN4VDgGEkzSCOw/Yo+uw04LP9sbv1TSdOEM4HDge+39AtGiqo/gDRd+XdJs4FzgVcarXoV0E1SQ67pyIgojOgmAK/lqd0JwAY00/xy0zwIuDh/n+mkad2CEaQR7JiWfhczM+sYSr2hzApp9HVtRCxzXcraTul3IXtGxH83t+6KvfpEryMuq0BVZtYV+cHWpUmaEhEDSn1W9pqfpBNIo67TOqOweiXpLmBTYPdq12JmVo+aHflZ9Q0YMCAmT55c7TLMzLqUciM/P9vTzMzqjpufmZnVHTc/MzOrO8v9g62XBw0vL6D3WfdVuwwz6yS+W7PyPPIzM7O64+ZnZmZ1x83PzMzqTsWan6QNJc3ND7NG0pr5/cbNbVtiX5+TdEc765mXs/tm5sy9jfPydqW7t3d7MzPrfBVrfhHxD9KDnAuZexcBwyLihTbs65WIaElSAwCSujXx0W45I3Ac8JPW1mFmZl1Tpac9LwV2kHQaKT/vf6HplHhJF0v6XmFjSedK+q/i0ZWkbpIukTQpj+KOz8uHSBoraSTQ0ExdT5DyCQu6SbpW0mxJYyStlPfZT9KT+Th3SVozL+8vaYakJ8ihuM3U1kvSeEnTJc2StEt7TqqZmbVORZtfTmv/IakJnpaTD6CJlHjgVlLYa8G3gNsb7fYYYEFEDCSlyB8r6fP5s0HAORGxZTOl7Q3cXfS+D/DbiNiKFEp7YF5+E3BmHi02kDL5IMUSnVoiu6+p2r5NSq/vB2xLSnxYipPczcw6TzV+z+8rpETzrUnhsNBESnxETJO0rqTPkYJ034yIFyX1LtrfXkBfSYVp0J6k5vUhKWF9bplaxub09/ksPe05NyIKDWkK0FtST2CNiHg0Lx9OSp1vvPzm/B3L1TYJuEFSd1IS/TLNz0nuZmadp6LNT1I/YE9gB+Avkm6NiFcpnxJ/BykX77OkkeAyuwVOiYjRjY41BHi3mZJ2y+vcCJwP/CAvb5zMvlK5r0XpJPsma8v1DQa+Btws6ZKIuKmZWs3MrINU8m5PkW54OS0iXgQuAX6VP24qJR5SwzuY1ABL3eE5Gjgxj6KQtJmkVVpaV0QsJEU2fadwJ2oT6y0A3iy6Pnc48GhEvAUskLRzXn5oc7XlO0vnR8S1wPXA9i2t18zM2q+SI79jgRcjojDVeRVwpKRdSanm9+SU+OnklHiAiJgtaTXg5TxKbOw6oDcwNTfY14H9W1NYRLwq6RbSzSo3l1n1COAaSSsDc4Cj8vKjSNOY75EaXnO1DQF+KGkR8A7wndbUa2Zm7eM8vy7ASe5myzc/27NzOM/PzMysiFMduoBt1u/JZP/L0Mysw3jkZ2ZmdcfNz8zM6o6bn5mZ1R1f8+sCnORutnzz3Z6V55GfmZnVHTc/MzOrO25+ZmZWdyra/CSFpJuL3q8g6XVJ91ayjqbkDMCQdEzRsu3ysjOqWZuZmXWcSo/83gW2LoTDkhIeXm7NDiR19k06DSydIXgwMKOTj2lmZhVUjWnPP5OifAAOAW4pfCDpM5LuzqnnT0rqm5efK2mYpDHATZJWlvSHvN5tkp6SNCCve3UOgZ0t6byifc+TdF5RWvwWTdT3ItBD0nr5YdR755oL+2kqzf1USU/n5bfmZatIuiEnuU/TkoT6rSRNzEnuMyX16ZhTa2ZmLVGN5ncrcLCkHkBf4Kmiz84DpuWk9LNJyekF/YH9IuLbwPdIwbZ9gQvyZwXn5AeZ9gV2LTTQ7F85Lf5qoNw05h3AN4EvAVNZOt+vqTT3s4Dt8vITCrUAj+Qk992AS3Lc0gnA5TnJfQDwUuMCnORuZtZ5Kt78ImImKebnEOD+Rh/vTI4UiohHgLVyUjrAqJy9V1jv1rzeLGBm0T6+JWkqMA3YCtiy6LM7888puYam/IHU/BqPTEuluQ/Or2cCIyQdBnyUl+0FnCVpOjCOFNC7EfAEcLakM4GNi77XJyJiWEQMiIgB3Vbu2fhjMzNrh2rd7TmKFGR7S6PlKrFuIXPp3WbWQ9LnSSO6L+cR2H0sSYSHJSO4xZT5Bf+I+CewiHRN8uGm1mvka8BvSaPQKfnapIADI6Jf/rNRRDwTESOBfYGFwGhJu7fwGGZm1gGq1fxuAM6PiIZGy8eTk9AlDSFNU/6nxPZ/Ab6V19sS2CYvX53UJBdIWg/4Sjtq/ClpenNxYUFTae6SPgVsGBFjgR8BawCrkoJtT8nXDpG0Xf65CTAnIq4g/UOgeGrWzMw6WVUebxYRLwGXl/joXOD3kmYC75GS00u5Chie15tGmnJcEBHPS5oGzCYlrT/Wjhofb+KjUmnu3YD/y9OiAi6NiLckXQBcBszMDXAesA/pbtLDcpL7P4Hz21qnmZm1XpdMcpfUDegeEe9L2pQ0NblZRHxY5dI6hZPczZZvfrZn5yiX5N5VH2y9MjBWUnfSSOvE5bXxmZlZx+uSzS8i3ib9ioCZmVmrdcnmV2+2Wb8nkz0tYmbWYfxgazMzqztufmZmVnc87dkFOMndbPnmuz0rzyM/MzOrO25+ZmZWd9z8zMys7rj5mZlZ3amZ5pfDY0dKmiNpiqQnJB3Qgfs/u+j1GpK+V2bdxTlodkYOv/1SM/vuLWlWfj1E0r0dVbeZmXW8mmh++aHPdwPjI2KTiOgPHAxs0Ip9dGtmlbOLXq9BCsRtysIcQbQt8GPgwpbWYWZmta8mmh+wO/BhRFxTWBARL0TEb+CTkdWEPAr7ZCSWR1ljJY0kpaoj6TBJE/PI7XeSukm6CFgpLxsBXARsmt9f0kxtqwNv5n1L0iWSZklqkDS03IaSVpF0g6RJkqZJ2i8v36qoxpmS+rTprJmZWZvUyu/5bQVMLfP5fGDPnOLQhxSCW3i25yBg64iYK+mLpLignSJikaSrgEMj4ixJJ0dEP0jNNG/Tr4njrZTT13sAvUjNGeAbQD9gW2BtYJKk8WXqPgd4JCKOlrQGMFHSQ8AJwOURMULSp0mRSEuRdBxwHEC31dcpcwgzM2utWml+S5H0W2Bn0mhwINAduFJSP1IK+2ZFq0+MiLn59ZdJSeqTcn7sSqTG2VoLixrljsBNkrbONd2SA25fk/QoMJCUJ1jKXsC+ks7I73sAGwFPAOdI2gC4MyKeb7xhRAwDhkGKNGrDdzAzsybUSvObDRxYeBMRJ0laG5icF50OvEYacX0KeL9o23eLXgsYHhE/7qjCIuKJXMs6ef+tIeDAiHiu0fJnJD0FfA0YLem7EfFIB5RrZmYtUCvX/B4Bekg6sWjZykWvewKvRsTHwOGUmCbMHgYOkrQugKTPSNo4f7Yo5/8BvA2s1pLCJG2Rj/dvYDwwNF9HXAcYDEwss/lo4JR8Qw+Stss/NwHmRMQVwCigb0tqMTOzjlETzS9SnPz+wK6S5kqaCAwHzsyrXAUcIelJ0pTnu03s52ngJ8AYSTOBB0nX7CBNIc6UNCIi/g08lm9cKXXDS+HmmOnAbcARearzLtIU5wxSw/5RRPyzzFe7gDRlOzP/KsQFeflQYFbe/xbATWVPkJmZdSilvmO1bMVefaLXEZdVuwwz6yR+sHXnkDQlIkoGn9fEyM/MzKySauWGFyvDSe5mZh3LIz8zM6s7bn5mZlZ33PzMzKzu+JpfF9Dw8gJ6n3Vftcswq2u+I3P54pGfmZnVHTc/MzOrO25+ZmZWdyrS/IqS0WfndPQfSGrXsSXNyw+cRlL//Fi07STtK+msJrY5tyhhoT3H7ifpq2U+HyDpimb28U576zAzs7ap1A0vxRFB6wIjSQ+r/lnxSpJWiIiPWrNjSX2BO4ChETENmEZ6WHTj9Tryu/Yj5QneX+o4ETGZJYkUZmZWYyo+7RkR80khrSfnZPQjJd0u6R5gDICkH+b085mSziuzuy8CdwOHR8TEvO2Rkq7Mr2+U9GtJY4GLizeUdKykP0taSdI4SZdJejw/7HpQXmdQXjYt/9w8h8+eT0p3mC5paB5RDpM0hpT9N0TSvXkfq0r6fU5+nynpwEZ1rC3pCUm+lczMrEKq8qsOETEnT3uumxftCPSNiDck7QX0ISW0CxglaXBElEpM/xNwWET8pczhNgP2iIjFks4FkHQyKWh2/4j4ICcOrRIRX5I0GLgB2Bp4FhgcER9J2gP4RUQcKOmnwICIODnv71xSiO7OEbFQ0pCi4/83sCAitsnrrln4QNJ6pFHqTyLiweKineRuZtZ5qvl7fsXBsA9GxBv59V75z7T8flVSMyzV/B4CvitpdI4cKuX2Rp8dDrxEanyLipbfAhAR4yWtLmkNUubfcEl9gCDFEzVlVEQsLLF8D+DgwpuIeDO/7E7KHzwpIh5tvJGT3M3MOk9V7vbMYa6Lgfl5UeM09gsjol/+84WIuL6JXZ2cf15V5nCNs/9mAb2BDRotb9xggpS/NzYitga+DvRoxXEKVGLfAB8BU4D/V2afZmbWCSre/HIC+jXAlVE6THA0cLSkVfP66xeS2Uv4GDgE2FzS+S0sYRpwPGk69XNFy4fm4+1MmqZcQLop5+X8+ZFF67Y4CZ50HbPQpIunPQM4GtiiqbtTzcysc1Sq+RWS0WeTpirHACVvZImIMaS7QZ+Q1EC6k7PJRhMRHwD7AftKOqklxeRrhGcA9xV+XQJ4U9LjpMZ8TF72S+BCSY8B3Yp2MRbYsnDDSzOH+x9gzXwjzQxgt6I6FpOmRHeT9L2W1G5mZu3nJHdA0jjgjPwrCjXHSe5m1edne3Y9TnI3MzMr4lQHICKGVLuGcpzkbmbWsTzyMzOzuuPmZ2ZmdcfNz8zM6o6v+XUBTnI3qz7f7bl88cjPzMzqjpufmZnVHTc/MzOrO5VKcg9JNxe9X0HS60WZd5+kr+cMvoPaeJxzJb2cHzv2tKRDOuYbmJnZ8qRSI793ga0lrZTf78mSB0YTEaMi4qIOOtalOTV+P+B3ksrFEFWcpG7Nr2VmZp2pktOefwYKt0sdQs7Pg6XT14tJuiCPBD8lqb+kRyVNkTRaUq9yB4uI54H3gDXzvjaV9EDefoKkLfLyGyVdLWmspMJZvtsAAA5TSURBVDmSdpV0g6RnJN1YVMs7ki7O2z+UU97H5W32zet0k3SJlqTQH5+XD8n7Hwk0SFpF0n2SZuQHXjf3cGwzM+tAlWx+twIHS+oB9AWeKreypF+Skt6PIiUq/AY4KCL6k5LWf97M9tsDz0dEITNwGHBK3v4Mls4AXBPYHTgduAe4FNgK2EZSv7zOKsC4vP3bpLSGPYEDgEKc0jGkOKSBwEDgWEmfz58NAs6JiC2BvYFXImLbnBX4QIn6j5M0WdLkxe8tKPdVzcyslSr2e34RMVNSb9Ko7/5mVv9v4KmIOA5A0ubA1sCDkiA1w1eb2PZ0SccCm5CaDDkb8EvA7Xl7gBWLtrknIiJHKL0WEQ15u9mk4NvpwIcsaVINwAcRsShv0zsv3wvoW3TNsicphf5DYGJEzC3a/leSLgbujYgJjb+Ek9zNzDpPpX/JfRTwK2AIsFaZ9SYB/SV9JiLeIKWhz46IHVtwjEsj4leSvgHcJGlT0gj3rXwtsJQP8s+Pi14X3hfO0aKi8N1P1ouIjyUV1hFpdDm6eOeShlCU9B4Rf5XUH/gqKS9wTES0NIzXzMzaqdK/6nADcH5hZFXGA8BFpLDZ1YDngHUk7QggqbukrcrtICLuBCYDR0TEf4C5kr6Zt5ekbdv5XUoZDZxYuMlG0maSVmm8Uk6Qfy8i/o/0j4HtO6EWMzNrQkVHfhHxEnB5C9e9PTe+UaQR0kHAFZJ6kuq+DJjdzG7OB0ZKuhY4FLha0k+A7qRrkDPa9EWadh1pCnSq0vzq68D+JdbbBrhE0sfAIuDEDq7DzMzKcJJ7F+Akd7Pq87M9ux4nuZuZmRVx8zMzs7rjSKMuYJv1ezLZUy5mZh3GIz8zM6s7bn5mZlZ3PO3ZBTjJ3azz+W7O+uKRn5mZ1R03PzMzqztufmZmVndquvlJeqfCxxsiaYGkaTnP72fNrN9b0rcrVZ+ZmXWMmm5+VTIhIrYDBgCH5fSFpvQGWtX8nORuZlZ9Nd/8JK0q6WFJUyU1SNovLy+Zhi7py3nk1pAT2VfMy+dJOq9oP1uUO25EvAtMATZtKqGdlDyxi6Tpkk53kruZWdfQFX7V4X3ggIj4j6S1gScljWJJGvrXACT1zCnxNwJfzpl5N5ESEwpPhf5XRGwv6XukNPfvNnVQSWsBOwAXUJTQnpvpY5LGAGcBZ0TEPnmb45pYD1KS+9YRMVfSgY1r75hTZWZmLVHzIz9SQOwvJM0EHgLWB9YjpaHvIeliSbtExAJgc2BuRPw1bzscGFy0rzvzzyksSV9vbBdJ04AxwEURMZuU0P4dSdOBp0hBvH1KbFtuvcZJ7o1rX/pLS8dJmixp8uL3lvnYzMzaoSuM/A4F1gH6R8QiSfOAHqXS0EnZf+UUUtoX0/R3n1AYyRUpl9De0vValeQeEcOAYZAijZr5XmZm1gpdYeTXE5ifG99uwMbQZBr6s0BvSV/I2x4OPNoBNTSV0P42sFoL1luKk9zNzKqrZkd+klYgjdRGAPdImgxMJzU4KJGGHhHvSzoKuD1vPwm4pgPKaSqhfSbwkaQZpGuNlzexXmNOcjczq6KaTXKXtC1wbUQMqnYt1eYkd7PO52d7Ln+6XJK7pBOAW4CfVLsWMzNb/tTktGdEXEPHTFeamZktoyabny3NSe5mZh2rJqc9zczMOpObn5mZ1R03PzMzqztufmZmVnfc/MzMrO64+ZmZWd1x8zMzs7rj5mdmZnXHzc/MzOpOzT7Y2paQ9DbwXLXraMLawL+qXUQTXFvbuLa2cW1t05m1bRwR65T6wI836xqea+rJ5NUmabJraz3X1jaurW1c27I87WlmZnXHzc/MzOqOm1/XMKzaBZTh2trGtbWNa2sb19aIb3gxM7O645GfmZnVHTc/MzOrO25+NU7S3pKek/Q3SWdVu55ikuZJapA0XdLkKtdyg6T5kmYVLfuMpAclPZ9/rllDtZ0r6eV87qZL+moV6tpQ0lhJz0iaLen7eXnVz1uZ2mrhvPWQNFHSjFzbeXn55yU9lc/bbZI+XUO13ShpbtF561fp2opq7CZpmqR78/uqnDc3vxomqRvwW+ArwJbAIZK2rG5Vy9gtIvrVwO8Q3Qjs3WjZWcDDEdEHeDi/r4YbWbY2gEvzuesXEfdXuCaAj4D/iogvAjsAJ+X/f9XCeWuqNqj+efsA2D0itgX6AXtL2gG4ONfWB3gTOKaGagP4YdF5m16F2gq+DzxT9L4q583Nr7YNAv4WEXMi4kPgVmC/KtdUkyJiPPBGo8X7AcPz6+HA/hUtKmuitqqLiFcjYmp+/TbpL6T1qYHzVqa2qovknfy2e/4TwO7AHXl5tc5bU7XVBEkbAF8DrsvvRZXOm5tfbVsf+EfR+5eokb8AsgDGSJoi6bhqF1PCehHxKqS/TIF1q1xPYydLmpmnRasyJVsgqTewHfAUNXbeGtUGNXDe8tTddGA+8CDwd+CtiPgor1K1/1Yb1xYRhfP283zeLpW0YjVqAy4DfgR8nN+vRZXOm5tfbVOJZTXzrzhgp4jYnjQte5KkwdUuqAu5GtiUNDX1KvC/1SpE0qrAH4HTIuI/1aqjlBK11cR5i4jFEdEP2IA0Q/PFUqtVtqp80Ea1Sdoa+DGwBTAQ+AxwZqXrkrQPMD8iphQvLrFqRc6bm19tewnYsOj9BsArVaplGRHxSv45H7iL9JdALXlNUi+A/HN+lev5RES8lv+S+hi4liqdO0ndSc1lRETcmRfXxHkrVVutnLeCiHgLGEe6LrmGpMLzkqv+32pRbXvnaeSIiA+A31Od87YTsK+keaRLOLuTRoJVOW9ufrVtEtAn3w31aeBgYFSVawJA0iqSViu8BvYCZpXfquJGAUfk10cAf6piLUspNJfsAKpw7vL1luuBZyLi10UfVf28NVVbjZy3dSStkV+vBOxBuiY5Fjgor1at81aqtmeL/jEj0jW1ip+3iPhxRGwQEb1Jf5c9EhGHUqXz5ie81Lh8K/dlQDfghoj4eZVLAkDSJqTRHqR0kJHVrE3SLcAQUjzKa8DPgLuBPwAbAS8C34yIit940kRtQ0hTdwHMA44vXGerYF07AxOABpZcgzmbdG2tquetTG2HUP3z1pd0Y0Y30gDiDxFxfv5v4lbStOI04LA80qqF2h4B1iFNM04HTii6MabiJA0BzoiIfap13tz8zMys7nja08zM6o6bn5mZ1R03PzMzqztufmZmVnfc/MzMrO64+ZmVIGlx0RPwp+dHbDW1bm/lxAZJ/aqRNNCZlNI71m7F+kdKurKdxyyZ6pA/K5k6IWkLSU9I+kDSGSW+Q9kEkk445vclzcr7Oq0958M6npufWWkLi56A3y8i5rVwu37ActX8qqRcqkNTqRNvAKcCv2pin80lkHTYMfMjxY4lPUllW2AfSX1a9tWtEtz8zFooj/AmSJqa/3yp0eefBs4HhuYRxlBJgyQ9rpRf9rikzfO6Wynlrk3PDxte5i9GSVdLmqyiXLa8fGDe14y8j9Uaj7Yk3Zt/kRhJ70i6WOkB5A/lmsZJmiNp37xOk9s3qunuvJ/ZKnqYuaSjJP1V0qOkx1gVln9dKattWj72enn5rkWj6mnKTwsqaCbVoWTqRETMj4hJwKJS//s1p4OP+UXgyYh4Lz+0+VHSE2msRqzQ/CpmdWklpSfjA8yNiANIz7jcMyLez83qFuCTUUREfCjpp8CAiDgZQNLqwOCI+EjSHsAvgAOBE4DLI2JEbprdStRwTkS8oZTr+HB+esezwG3A0IiYlPe/sJnvsgowLiLOlHQX8D/AnqSMyOG07pF5R+eaVgImSfoj8GngPKA/sID0uKppef2/ADtEREj6LumJ/v8FnAGcFBGPKT28+v2mDqhlUx2WSp2Q1JLUiUICSQC/i4hh5VbugGPOIqUorEX63+erQFUDn21pbn5mpS3MT8Yv1h24UikFezGwWQv20xMYnptl5H0APAGco5RvdmdEPF9i22/l0dUKQC9Sswrg1TzaoJDCIJV6OP4nPgQeyK8bgA8iYpGkBqB3C75DsVMlFUYwGwJ9gM+SmuvruZbbWHJuNgBuU3q25KeBuXn5Y8CvJY0gff+XSh1MHZc4sVNEvJKb1oOSns05i51yzIh4RtLFpLijd4AZpGlVqxGe9jRrudNJz+bcljTi+3QLtrkAGBsRWwNfB3oARMRIYF/SqGC0pN2LN5L0edLo6MsR0Re4L28rSke+fMTS/z33KHq9KJY8x/BjUto3ORmh8A/gctsXahpCelDyjpGSwqcVrdfUcxJ/A1wZEdsAx7Pk+18EfBdYCXhS0hYljlcqcQLakDpRKoEk3+BSmHo9oROOeX1EbB8Rg0nXBkv9A8eqxM3PrOV6kkZdHwOHU3qq8m1gtUbbvJxfH1lYqPQw3zkRcQVp2rFvo/2sDrwLLMjXyb6Slz8LfE7SwLyf1ZTiYOYB/SR9StKGtD6ypiXb9wTejIj3crPaIS9/Chgiaa3cPL7ZxPcvJEUgadOIaIiIi0nTgUs1P6nJxAloZeqEmkggiYh/FN3QdE1HHjMfa938cyPgG6RpcqsRnvY0a7mrgD9K+ibputa7JdYZC5yVrxdeCPySNO35A+CRovWGAodJWgT8k3SjzCciYoakacBsYA5pmrBwXXEo8Jt83W0haTT2GGlKsYF0vWlqK79bS7Z/ADhB0kzgOeDJXNOrks4lTeW+mrct/MPgXOB2SS/n9T+fl58maTfS9PHTwJ8bHWsn0j8wGoquvZ4dEfcDFwF/kHQMOXUCQNJnSY10deBjpV8v2JKUpnFXnhouJJA8wLI67Jh5uvSP+ZrfItL1zTdLHNOqxKkOZmZWdzztaWZmdcfNz8zM6o6bn5mZ1R03PzMzqztufmZmVnfc/MzMrO64+ZmZWd35/6sjotX9hv3zAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.barh(y = df_jugador.index[10::-1], width = df_jugador[10::-1])\n",
"plt.xlabel('Faltas acumuladas 2015-2019')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Player Team \n",
"Germain Ifedi Seattle Seahawks 38\n",
"Taylor Lewan Tennessee Titans 38\n",
"Donovan Smith Tampa Bay Buccaneers 34\n",
"Morgan Moses Washington Redskins 32\n",
"Garett Bolles Denver Broncos 32\n",
" ..\n",
"T.J. Lang Detroit Lions 7\n",
"Russell Wilson Seattle Seahawks 7\n",
"Stephon Gilmore New England Patriots 7\n",
"Eli Apple New York Giants 7\n",
"Johnny Holton Oakland Raiders 7\n",
"Name: Num, Length: 198, dtype: int64"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Faltas por jugador y equipo\n",
"gr_jug_eq = df_penal.groupby(['Player', 'Team'])\n",
"ser_jug_eq = gr_jug_eq.sum()['Num'].sort_values(ascending = False)\n",
"ser_jug_eq"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAcVUlEQVR4nO3deZxcVZ3+8c8Twh4gQBrZbVAWERnEBhVlFRXZ1YyCIkRhIowCLojBBZgRlRF/4I9xwYAQFGQHZV8EImFQsIEAQXYJEAikIzuMIPCdP85pclPp6qruqu7OIc/79epX37r31j3fW7f6qXPPrepSRGBmZuUZNdIFmJnZ4DjAzcwK5QA3MyuUA9zMrFAOcDOzQjnAzcwK5QAfAEmnSzpqBNo9WtKUJte9QdKEOsu+K+nEdtbWDElvl+T3q2aSRksKSZ11lu8r6fLhrerNSdK9krYa6TqGyiIZ4JJmSvpfSS9UflYf4DZ2kDRziEocEhHxvYg4YKTraAdJW0i6TNIz+ecuSd+TNHaY2j9a0j/zc+cZSf8jaYt2bDsiTouIj7VjW4u6iNggIqaNdB1DZZEM8GzXiBhT+Xl8pAuyBUka3ce8rYBrganA+hExFtgpL9642e20wRkRMQboAKYB5w5BG28qQ3QcFlmLcoAvQNIoSedJeiL3qqZKekcf660AXAysXenBryLp/ZL+nO87W9IJkhavbPsESXMkPSvpDkkb1aljXUnTJD0v6Upg5ZrlH6i0M13S1k3u3xtDMX2dQUiaJWnbPL1MHjJ6RtJfJU2qri/pO5L+lmu8S9JulWWLSTpe0t8lPQjsWNPOmpIukfSUpPslfaGmxrMlnSnpeWDvPnblWOCkiPhRRMwBiIiHI+K7EXFD3s7+kq7Pj/lTwHcq8++R9LSkyyWtVWn7Y5Luy8fnv3OvekKjxzUi/gn8lvR8WLGyvQMkPZAfh99JWq3mrrtKekjSXEnHSBpVqXFqnu4dbvli3tbTkk6otLF+3s9n83Z+W1n2QUndednNkt5bWXaDpP+QdGM+hldIWqmv/et9rkg6Iu/LQ5L2rCwfm58rPXm9wyWpv+NQs/1Rkr4l6cG8D2fVPI4TJD2cl02qeZ7ON6xZ+7yuWbf3uXVu3uduSe+qrPtOSX/Mz/k7Je3c1+OxMHGAL+gSYD1gVWAG8JvaFSLiWWBX4JFKD34O8CpwCDAO+AApuL6Y7/Yx4H152ysCewJP1anhLODPeTvHAJ/rXZAD5yLgSGAlYBJwgaSV+9hOK/4TWB3oBD7KgkF6H2kfVwC+D/xW0lvysgOBjwD/AmwBfKrmvmcDD+Xtfxr4kaRtKss/TgrEFfK6b5C0fN7m+U3sw5bA3aQe8n9JGg98A9g9z7spt4OkVYBz8vJxub6mhkQkLQnsA/QAz+V5HyE9huOBNYDHgTNq7ro7sBnQldfbp59mdgLeA7wb2FvSDnn+94FLSc+pNYGf5fbH5fn/j9QBOAG4rBqMwGeAfYG3AMsCX+un/TWB5UjHbD/gFElvz8t+DiwDrAtsn5dX92W+49DHtr8G7Axsndt5MddLDtif5lrXyO2v2k+djXyCdMxXAs4DLswvkkuQ/vYvzXV+FTi7so8Lp4hY5H6AmcALwDP553d11hsHBLBsvn06cFSe3gGY2aCdQ4Fz8/RHgHuA9wKj+rnPusArwDKVeecAU/L0t4FTa+5zDfDZPH0DMKHOto+ubGeB+oFZwLZ5+hHgQ5VlB/S3v6QXu53z9PXA/pVlO6WnWgCsA/yz9zHN844FTq7UeG0/7XTmY/L2yrzj8nF8EZiU5+0P/K3mvlcD+1ZujwZeJgXDF4BplWUCZjd4LF/J7b5GCu+tK8tPA35Qub18Xm/N3G4AO1SWHwxcWal9aqXGAN5XWfcC4NA8/VvgF8AaNfV9HrixZt5fgL0rz5NJNe1fUmdfd+jjOXkBcDiwOKnjsn5l2ZeAP9Q7Dn1s/35gm8rttfJxGUV6ETy9smxMfhx7n6dv/E329bxm/uf00cANlWWLAXOA9wPbAY8Bqiw/F/hOf7WP9M+i3APfIyLG5p894I1T/x8pDQ08BzyQ1x3XzAYlbSjpUqUhmOdIT75xABFxFXAi6Y/tSUknSlquj82sDvw9Il6qzHu4Mv1WYC/Nu3j3DKlnP6CLsE1YDXi0crs63Xtae3ulhg2Z9zitXrN+tf7VgbkR8WLN8jXqtVXjKVKgvTEcERFfizQOfjEp8Opt563Azyo1zwVeJ4XqfDXnV5tZ/dQB8Nvc7qrAvaTeca/Vqex3RDwHPE39/XyY/o/hE5Xpl0hBBvB1Uoh259P+fftqv9JGtf162+xLX8/J1YFVSEH4cM2yZo8nwNrAxZXjcifpGK/CgsflBeqfuTajuq3XSKG9ev55JB/3evux0FmUA7wv+5B6i9uTTt97T5/Ux7p9vS3ul6Se6NsjYnngiOp9I+InEbEZ6ULbRvR9yjobWFnS0pV5a1emHyX1wMdWfpaNiGOb2sN5XiSd9gJvXFyqDsM8QQq2XtWx4nVJL0QHAivnELuHefs6u7p+Tf2PA+MkLVuz/LHK7bpvOcxB2E06FW6kdjuPAvvVPHZLR8RNueY39jeP4Tb1xxsRPaShsqMrw0iPk14were3HGmYo7qftY/RgC+kR8TsiNg/IlYj9XwnS1qntv1KG4/VbqNJfT0nHyf1YF+raavp45nNAj5cc1yWiognqHkuSRpDGv7oNd/zmMbDK9VtjWLe8NbjwFq9Y/d19mOh4wCf33KkU7e/k54U3+9n3SdJQVTtRS8HPAu8qHTxs3f8u/dtb1vkoHyRdEr6Wu1GI+JB4A7gKElLKF2grF5M+Q3wcUkfzmcMS0naTgN8GyQpcJeT9FGlC61Hknpyvc4BvpUvUK1JCodeY0h/lD1p17Q/qQdeve9XJK2Rx+a/Wdm/h0gB/ANJS0ralHS6Xzs+3J9vABMlHSapA964NlAbWLVOBL6dj03vxbfxedklwGaSds3H6BDSWGhTIuIu0lDWoXnWmcB+kjbJY+Q/JA3RVHv1h+Ua1iYNYcw33t8MSZ+S1PtC8wzpuLyW9+edkj6dx3g/Q+qQXDbQNrJRzHtObku6pnNepAu455GO55j84vFV0tBGs07M918779MqmndR/Fxgd6U3CCxJGgapviBMB3aWtKLSReKDG7S1haTd83P+UOB50tDSjaShoK9LWlzS9qTO3DkD2I9h5wCf36nMezW+i3RQ+xQRM0gX0mbmU79VSKez+5KeFL9k/j/IscCvSH9kM0k9i+PrbH5P0gXCp0hj3m9cSI2ImaSLfN8lBegjud0BHcuIeBo4iDRW+1huq3pKfSTpRWomcBXpifxyvu8dpItMN+f92JB0QbDXL0hhdifpj+O8muY/TbqY+0Re9q2IuG4Atf+RNNa5HfBAPu2+HPgD6YJavfudSxovPzcPcd1BukBLRDyZ6zqO9AL+NuC23n1u0rHAgZLGRcQVpCG0C0mP0drAZ2vWv5gUQLfl9aYMoK1e7wX+IulF0rj0lyLikXxWsBvpxfPvpFDdJSIGO/wwi9TxmE16zuwfEffnZf9O6pA8BPwxL//1ALZ9HHAFcI3SO49uBDaHN55rh5Cef4+RnjPV5+kU0gXSh/M2zmrQ1oWkC/JPkY73JyLi1Yh4mfTGhN1JQ2snAJ+JiPsGsB/DTvMP+dibmaQfAOMiYuIg7nsQ6brBh9pf2cJH0mKkF/Lx8Sb+IEgz8jteTo6IzpGuBdJbA0kXY6cO8H5HA2tGxIShqGskuAe+iMhjexuReknNrL+GpC2V3qP7DlIP7sKhrHGkSdpR0gr5VP27pFPqm0e4LLO6/KmoRcftpLdO/qrJ9ZcETiK9be9p0pjuL4eksoXHB0lj8UuQhtD2yKfWZgslD6GYmRXKQyhmZoUa1iGUcePGRWdn53A2aWZWvFtuuWVuRCzwttZhDfDOzk66u7uHs0kzs+JJqv1ULeAhFDOzYjnAzcwK5QA3MyuUA9zMrFAOcDOzQjnAzcwK5QA3MyuUA9zMrFAOcDOzQhXz3wg7J1060iW8ac08ZufGK5nZQsc9cDOzQjnAzcwK5QA3MyuUA9zMrFAOcDOzQjnAzcwK5QA3MyuUA9zMrFANA1zSKZLmSJpRM/8gSfdKukvSj4auRDMz60szPfApwI7VGZK2A3YHNomIdwI/bn9pZmbWn4YBHhHXA0/VzD4QOCYiXs7rzBmC2szMrB+DHQNfH9hK0k2S/ihp83orSpooqVtSd09PzyCbMzOzWoMN8NHAisD7gG8A50hSXytGxOSI6IqIro6OjkE2Z2ZmtQYb4LOACyK5GXgdGNe+sszMrJHBBvjvgO0BJK0PLAHMbVdRZmbWWMP/By7pTGBbYJykWcCRwCnAKfmtha8A+0ZEDGWhZmY2v4YBHhF71Vm0d5trMTOzAfAnMc3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDQNc0imS5uQvb6hddqikkOSvUzMzG2bN9MCnADvWzpS0FvBh4JE212RmZk1oGOARcT3wVB+LjgcOA/xVamZmI2BQY+CSdgMei4jbm1h3oqRuSd09PT2Dac7MzPow4ACXtAzwbeCIZtaPiMkR0RURXR0dHQNtzszM6hhMD/xtwDrA7ZJmAmsCt0patZ2FmZlZ/xp+K32tiLgTWKX3dg7xroiY28a6zMysgWbeRngm8CdgA0mzJO039GWZmVkjDXvgEbFXg+WdbavGzMya5k9impkVygFuZlYoB7iZWaEc4GZmhXKAm5kVygFuZlaoAX+Qx6xZnZMuHekS3rRmHrPzSJdgCwH3wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I184UOp0iaI2lGZd6xku6RdIekCyWNHdoyzcysVjM98CnAjjXzrgY2johNgPuAw9tcl5mZNdAwwCPieuCpmnlXRcSr+eafSV9sbGZmw6gdY+BfAC5vw3bMzGwAWgpwSd8GXgXO6GediZK6JXX39PS00pyZmVUMOsAl7QvsAnw2IqLeehExOSK6IqKro6NjsM2ZmVmNQf07WUk7At8EtomIl9pbkpmZNaOZtxGeCfwJ2EDSLEn7AT8FlgOuljRd0olDXKeZmdVo2AOPiL36mP2rIajFzMwGwJ/ENDMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0IN6pOYZvbm1Dnp0pEu4U1r5jE7t32b7oGbmRXKAW5mVigHuJlZoRzgZmaFcoCbmRXKAW5mVigHuJlZoRzgZmaFauYbeU6RNEfSjMq8lSRdLen+/HvFoS3TzMxqNdMDnwLsWDNvEnBNRKwHXJNvm5nZMGoY4BFxPfBUzezdgdPy9GnAHm2uy8zMGhjsGPhbImI2QP69Sr0VJU2U1C2pu6enZ5DNmZlZrSG/iBkRkyOiKyK6Ojo6hro5M7NFxmAD/ElJqwHk33PaV5KZmTVjsAF+EbBvnt4X+H17yjEzs2Y18zbCM4E/ARtImiVpP+AY4MOS7gc+nG+bmdkwaviFDhGxV51FH2pzLWZmNgD+JKaZWaEc4GZmhXKAm5kVygFuZlYoB7iZWaEc4GZmhXKAm5kVygFuZlYoB7iZWaEc4GZmhXKAm5kVygFuZlYoB7iZWaEc4GZmhXKAm5kVqqUAl/RVSXdJmiHpTElLtaswMzPr36ADXNIawMFAV0RsDCwG7NmuwszMrH+tDqGMBpaWNBpYBni89ZLMzKwZgw7wiHgM+DHwCDAbeDYirqpdT9JESd2Sunt6egZfqZmZzaeVIZQVgd2BdYDVgWUl7V27XkRMjoiuiOjq6OgYfKVmZjafVoZQdgAeioieiPgncAGwZXvKMjOzRloJ8EeA90laRpJI31J/d3vKMjOzRloZA78JOA+4Fbgzb2tym+oyM7MGRrdy54g4EjiyTbWYmdkA+JOYZmaFcoCbmRXKAW5mVigHuJlZoRzgZmaFcoCbmRXKAW5mVigHuJlZoRzgZmaFcoCbmRXKAW5mVigHuJlZoRzgZmaFcoCbmRXKAW5mVigHuJlZoVoKcEljJZ0n6R5Jd0t6f7sKMzOz/rX0jTzA/weuiIjxkpYAlmlDTWZm1oRBB7ik5YGtgQkAEfEK8Ep7yjIzs0ZaGUJZF+gBTpV0m6STJS1bu5KkiZK6JXX39PS00JyZmVW1EuCjgc2AX0TEu4EXgUm1K0XE5Ijoioiujo6OFpozM7OqVgJ8FjArIm7Kt88jBbqZmQ2DQQd4RDwBPCppgzzrQ8Bf21KVmZk11Oq7UA4CzsjvQPkb8PnWSzIzs2a0FOARMR3oalMtZmY2AP4kpplZoRzgZmaFcoCbmRXKAW5mVigHuJlZoRzgZmaFcoCbmRXKAW5mVigHuJlZoRzgZmaFcoCbmRXKAW5mVigHuJlZoRzgZmaFcoCbmRWq5QCXtFj+UuNL2lGQmZk1px098EOAu9uwHTMzG4CWAlzSmsDOwMntKcfMzJrVag/8J8BhwOv1VpA0UVK3pO6enp4WmzMzs16DDnBJuwBzIuKW/taLiMkR0RURXR0dHYNtzszMarTSA/8AsJukmcBZwPaSTm9LVWZm1tCgAzwiDo+INSOiE9gTuDYi9m5bZWZm1i+/D9zMrFCj27GRiJgKTG3HtszMrDnugZuZFcoBbmZWKAe4mVmhHOBmZoVygJuZFcoBbmZWKAe4mVmhHOBmZoVygJuZFcoBbmZWKAe4mVmhHOBmZoVygJuZFcoBbmZWKAe4mVmhWvlOzLUkXSfpbkl3STqknYWZmVn/WvlCh1eBr0fErZKWA26RdHVE/LVNtZmZWT9a+U7M2RFxa55+HrgbWKNdhZmZWf/aMgYuqRN4N3BTH8smSuqW1N3T09OO5szMjDYEuKQxwPnAVyLiudrlETE5Iroioqujo6PV5szMLGspwCUtTgrvMyLigvaUZGZmzWjlXSgCfgXcHRHHta8kMzNrRis98A8AnwO2lzQ9/+zUprrMzKyBQb+NMCJuANTGWszMbAD8SUwzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQDnAzs0I5wM3MCuUANzMrlAPczKxQrX4n5o6S7pX0gKRJ7SrKzMwaa+U7MRcDfgZ8DNgI2EvSRu0qzMzM+tdKD3wL4IGI+FtEvAKcBezenrLMzKyRQX8nJrAG8Gjl9izgvbUrSZoITMw3X5B0bwttlmQcMHeki2iG/mukK1goFHO8wMcsW5SO2Vv7mtlKgPf1hcaxwIyIycDkFtopkqTuiOga6TqsOT5e5fExa20IZRawVuX2msDjrZVjZmbNaiXA/wKsJ2kdSUsAewIXtacsMzNrZNBDKBHxqqQvA1cCiwGnRMRdbausfIvcsFHhfLzKs8gfM0UsMGxtZmYF8CcxzcwK5QA3MytUMQEuaVVJZ0l6UNJfJV0maX1JnZJmtLmttm1T0raSLqkz/1lJ0yXdIekPklZpR5sLG0nflnRX3s/pkhb4vEDN+v8paYcG62wracs6yyZI+mkrNeftHCBpnybX7T2et0m6R9KPW23f5pH0Qj/Lbpd05nDWs7Bo5X3gw0aSgAuB0yJizzxvU+AtzP9hotJMi4hdACT9EPgScGR1BUmjI+LVkSiuHSS9H9gF2CwiXpY0Dliiv/tExBFNbHpb4AXgxpaLrF/HiQO8y7SI2EXS0sBtki6MiP8ZitoskfQOUkd0a0nLRsSLI13TcCqlB74d8M/qH1RETI+IadWVJC0m6VhJf8m9vS/m+WdL2qmy3hRJn6y3fs02OyVNk3Rr/tkyz99W0lRJ5+Ue1xn5hab3n3zdI+kG4BONdi7fbzng6Xz7KEmTJV0F/FrSUpJOlXRn7uFtl9e7TNImefo2SUfk6e9J2r9BjcfkM5k7hri3uBowNyJeBoiIuRHxeK7hiPzYz8j721vbFEnj8/RMSf+RH/s7JW0oqRM4APhq7tFv1UwhkvbK25ghzftcXLV3J2m8pCl5+ihJh+bpgyuP11n9tRMR/wtMJ31aGUlbSLoxH6MbJW2Q50+Q9DtJF0t6SNKXJX0tr/dnSSsNtO1F0GeA3wBXAbuNcC3DLyIW+h/gYOD4Oss6gRl5eiLwnTy9JNANrAN8nNR7h9T7exRYup/1q9tcBlgqT68HdOfpbYFnSR9gGgX8CfggsFTe/nqkT6ueA1zSR92995+e178HWD4vOwq4BVg63/46cGqe3hB4JLczidRrX570vvwr8zrXARv0U+NKwL3MexfS2CE8dmPyPt4H/BzYprJspcr0b4Bd8/QUYHyengkclKf/HTi58hgdWqfNCcBPa+atnh+3DtKZ57XAHnnZC5X1xgNTatsgfUhtyXqPV36sL8nTK+bjt2q+vTwwOk/vAJxfqfMB0ot3Rz5WB+RlxwNfaabtReGneoxq5t9H+pj5R4CLRrrO4f4ppQferI8A+0iaDtwErEwK0suB7SUtSfrviddH6iXVW79qceAkSXcC55L+82KvmyNiVkS8TgqpTlLAPhQR90d6hp3eT73TImLTiFgLOBX4UWXZRblGSKH7G4CIuAd4GFgfmAZsnZdfCoyRtAzQGRG9/3OmrxqfA/4BnCzpE8BL/dTYkoh4AXgP6cWyBzhb0oS8eDtJN+XHdnvgnXU2c0H+fQup/sHYHJgaET2RhqTOID12zboDOEPS3kC9Ia2tJN0BPEEK8yfy/BWAc5WuqxzP/Pt5XUQ8HxE9pAC/OM+/k3n72kzbixxJmwM9EfEwcA2wmaQVR7isYVVKgN9FCoFGROqtbZp/1omIqyLiH8BU4KPAp0n/ObHu+jXb/CrwJPAvQBfzj9++XJl+jXnXFAbz5vqLmD9QqmN5ff3fGUi97i5gK+B64Dbg30hBV7fGHGBbAOcDewBXDKLepkXEaxExNSKOBL4MfFLSUqQe+fiIeBdwEumsoi+9+1B9jAeq3mMI8x+vejXsTPr3ye8BbpHUVx3TImIT4F3AgUrXaQC+RwrqjYFda9qoHp/XK7dfZ96+NtP2omgvYENJM4EHSWc6nxzRioZZKQF+LbCkpH/rnSFpc0nb1Kx3JekPZ/G8zvqSls3LzgI+Twq7K5tYv9cKwOzcg/0c6VOn/bkHWEfS2/LtvZrcxw+SnoR9uR74bG+NwNrAvZH+je+jwKeAP5N65Ifm33VJGgOsEBGXAV8BNu1v/VZI2kBS9axmU9IZRG+Izc31jB/gpp8nDT006yZgG0njlP6X/V7AH/OyJyW9Q9Io0nBb7T6MAtaKiOuAw4CxpKGhPkXEfcAPgW/mWSsAj+XpCQOoecBtLyry4/KvwCYR0RkRnaR/Z93s39ubQhGv5BERkj4O/ETpm3/+QRob/UrNqieTTjtvzRfEekg9TEgXOX5NGpp4pYn1e/0cOF/Sv5LGlvu9yh0R/1D6F7qXSpoL3ABsXGf1rfLwjUinz/vXWe/nwIl5qOFVYELki4KksP5QRLwkaRppvLvfACcF3+9zL1iks4yhMgb4b0ljSbU/AEyMiGcknUQaKphJOpsYiIuB8yTtTjqLqt3nCZKqx/J9wOGkYyjgsoj4fV42CbiE9GI4gwUDcjHgdEkr5PseHxHPNKjvROBQSeuQhsZOk/Q1UmdkIAbT9pvRMpJmVW4fBzwWEY9V5l0PbCRptYiYPbzljQx/lN7MrFClDKGYmVkNB7iZWaEc4GZmhXKAm5kVygFuZlYoB7iZWaEc4GZmhfo/7K443IwaZ7MAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"#Faltas de un jugador en particular\n",
"#por equipo\n",
"jug = 'Greg Robinson'\n",
"plt.bar(x = ser_jug_eq[jug].index, height = ser_jug_eq[jug])\n",
"plt.title(f'Faltas del jugador {jug} por equipo')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Team\n",
"Tampa Bay Buccaneers 127\n",
"Seattle Seahawks 123\n",
"Washington Redskins 122\n",
"Houston Texans 102\n",
"Denver Broncos 100\n",
"Oakland Raiders 100\n",
"Miami Dolphins 98\n",
"Jacksonville Jaguars 96\n",
"Philadelphia Eagles 88\n",
"New Orleans Saints 84\n",
"Kansas City Chiefs 83\n",
"Cleveland Browns 78\n",
"Dallas Cowboys 76\n",
"Chicago Bears 73\n",
"Atlanta Falcons 70\n",
"Cincinnati Bengals 70\n",
"San Francisco 49ers 70\n",
"Pittsburgh Steelers 58\n",
"Buffalo Bills 57\n",
"Minnesota Vikings 55\n",
"Green Bay Packers 55\n",
"New York Giants 54\n",
"Carolina Panthers 53\n",
"New England Patriots 49\n",
"New York Jets 48\n",
"Tennessee Titans 46\n",
"Arizona Cardinals 42\n",
"Indianapolis Colts 41\n",
"LA 40\n",
"LAC 39\n",
"Baltimore Ravens 34\n",
"Detroit Lions 33\n",
"San Diego Chargers 20\n",
"Saint Louis Rams 13\n",
"Name: Num, dtype: int64"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Equipos con más faltas\n",
"gr_equipo = df_penal.groupby('Team')\n",
"ser_equipo = gr_equipo.sum()['Num'].sort_values(ascending = False)\n",
"ser_equipo"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdkAAAD4CAYAAACgwJwlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de7xVVbn/8c9XVBTRTV4jTFEPZioCguQ9NDMtEzVPalZoJtkpTcuKMovKTM3yEpkhKV4wyVsamNfwrsDmIhvxVuop0Z/oUfECoeDz+2OMJZPF2lf2Yu29/b5fr/3ac40555jPXEt51hhz7vkoIjAzM7P2t0atAzAzM+uqnGTNzMyqxEnWzMysSpxkzczMqsRJ1szMrErWrHUA1rFsvPHG0bdv31qHYWbWqcyYMePliNikvN1J1lbQt29f6uvrax2GmVmnIul/K7V7utjMzKxKnGTNzMyqxEnWzMysSpxkzczMqsRJ1szMrEqcZM3MzKrESdbMzKxKnGTNzMyqxA+jsBU0zF9I31GTax2Gmdlq9exZn6lKvx7JmpmZVYmTrJmZWZU4yZqZmVVJk9dkJW0E3JVffhBYBryUXw+NiLerGFtTcd0PbAIsBtYGfh0Rf+yo/ZqZ2ftTk0k2Iv4PGAggaTTwZkScuxriaokjImK2pI2BpyRdHhFLO3C/q52kNTtr7GZmXUGbp4sl/VXSDEmPSvpqbltT0muSfiVppqTbJH1M0j2Snpb06bzdVyXdmNc/IelHTfXbjJ7AW6RRNpLGSqrP+/84t31K0rWFYxwo6c8t7bd0XoX9j5Q0Li9/UNJNkuZIekTSx3L7sYW2y3LbcElTJc2SdLukTXP7GZL+WHifvlE41ghJ0yTNlnSRpDUK5/BQfp8nSlovtz8n6XRJDwCHSjpF0rwcx1UteD/NzKydrMqf8IyIiFck9QDqJV0PvAHUAbdHxHcl/RUYDXwCGAD8Abgl7z8U2BF4G5guaVJEzK7Ub0S8WuH4EyUtAfoBJ0ZE5PZRef81gSmSrgPuAC6UtFEenR8LXNbIea3Ur6Sm3offAXdExJh8zB6SBgDfB3bPsWyYt70XuDn3eQLwnbwdwLb5feoFPCbpYuCjwKG5n6WSxgJHSroTGAV8IiIWSToN+BZwZu7rrYjYA0DSC8CWEfG2pF5NnYiZmbWvVUmyp0g6OC9vDmwDzAYWR8Qdub0BWJgTRAPQt7D/baXkKekvwJ55/0r9VqoiXprW3RR4UNKtEfEccJSk4/K5fQjYPiLmSboa+IKkCcBg4KhGzmulfoH/18T7MAw4EiBPzb4uaV9gYkS8kttfydtuAfxZ0geB7sCThX4m5WvcCyS9Qro2vB+wC+nLBsC6wL+BRcD2OT5I14/vL/Q1sbD8KHCVpJuAv1Q6AUkjgZEA3TbYpIlTNTOz1mhTkpW0H7A3sGtELM43DK2TVxdvhnoXWFJYLh4vWFE0029FEbFA0iPAUEnrkkZ0QyPitTw9Wtr/UuD6vDwxIpa1tF9ScioOZ8tjKj8XVWiDNOo9MyJuyec6qrBuSWF5Gem9EnBpRJy+QufSocCtEfGlRsJ/q7D8KeDjwHDgR5J2LD/3iBgLjAXo3rtfpbjNzKwN2npNtg54JSfCHUijrdbaX1KvPC08HHigLf3ma5EDgH8CG5CmrF+X1JuUYACIiH8DL5MS2/jW9BsR7wKvSuqXr4keWth0CnBC3qebpA2AO0nTuhvm9tJ0cR0wX2n4OaK5GHI/n1e6CQtJG0naAngQ+LikrUuxSupX4Ry6AZtHxN+B75JGxz1acFwzM2sHbZ0ungyMzCO9x4GpbejjfuBq0nTwlXmK9vFW9DtR0mLStOslEfFITl7zgLnA06TEXXQ1sEFEPEnjVuo3t38fuBX4Vz5G99z+TeASSV8DlgJfi4hpks4B7pW0FJgBHEe6Pn0j8BwwDejdRBxERIOknwJ35uT+DnBCREzPU+ITJa2dN/8h8FRZF2sCV0tan/SF6uyIeKOpY5qZWfvR8vuFVuNB013DO0bEyav5uBcDD0XE5avzuJ1J9979oveI82sdhpnZarWqzy6WNCMihpS3v28KBEiaDbwKnFTrWMzM7P2hJkk2IsbV4JgDV/cxzczs/e19M5K1lunfp476KpV8MjN7v3GBADMzsypxkjUzM6sSJ1kzM7Mq8TVZW0HD/IX0HTW51mGYmbWLVf3TnFXlkayZmVmVOMmamZlViZOsmZlZlXTIJCvpNKWi63NysfKPtbGfQyRtX3h9jKQPFV7fLWmlx2A10d+uSkXXZ0t6TNLoNsY1TNKktuzbRJ/jJR3enn2amdmq6XA3PknaDTgI2DkiluQKNGs3s1tjDgEmkR7oD3AMqXjA823s73Lg87kYQTfgI23sx8zM3gc64ki2N/ByRCwBiIiXI+J5AEmDJd0jaYak23I5OyQdL2m6pEckXS+ph6TdgYOBX+WR5/eBIcCE/Hrd4kEl7S/pIUkzJV0rqWeF2DYFXshxLYuIeXnf9SRdmmOYJWl4bu8r6b7c58wcU0lPSddJelzShFxBCEk/zv3MlTRWyaaSZuT1AyRFLnmHpH/mcoHFc/l5HtmuIeksSfPyrMC5q/LBmJlZ63TEJHs78GFJT0q6SNLHASStBfwWODwiBpOKsP8i73NDROwSEQOAx4DjIuJB4GbguxExMCLOBuqBo/PrxaUD5tHyj4D9ImLnvN23K8R2HvCEpBslfU1SqXj7acDfI2IXYB9SYl8PWAB8Mvd5BHBhoa9BwMnA9sDWwB65fUw+lx2BdYGDImIBsE6uVbtXjm8vSVsCCyJiUeFcziF9GTgW6EWqfbtDROwEnFHpDZc0UlK9pPplixZW2sTMzNqgw00XR8SbkgaTksk+pJqpo0iJZUfgjjzo60YeVQI7SjqDlFR6Are18rC7kpLdA7nvtYGHKsT2M0kTgP2BLwBHAcPy64MlnZo3XQfYgjQtPUbSQGAZsG2hu2kR8Ry8VyGoL6nG7j6Svkcqrr4h8CjwV1Kh9j2AvYEzgQMAAfcV+jwdmBoRI3O/rwP/AcZJmkyaOl9JRIwFxkIqddfcm2VmZi3T4ZIspKlY4G7gbkkNwAhS4fNHI2K3CruMBw7J10qPISW+1hBwR0Qc1YLY/gn8XtIlwEuSNsr7fy4inlih03Rj1IvAANKswX8Kq5cUlpcBa+aR8UXAkIj4d96/NFq+j/TFY0vgJlIR+WDFxDkdGCxpw4h4JSKWShoKfAI4klRgft/mztHMzNpHh5sulvQRSf0KTQOB/wWeADbJN0YhaS1JO+Rt1gdeyFPKRxf2fSOva+x1ycPAHpL+K/fdQ9K25RtJ+kzp2inQj5QcXyONnE8sXFcdlLepA16IiHeBL5FG300pJdSX8zXh4t3C9wJfBJ7K/b0CfBp4oLDNrcBZwGRJ6+c+6iLiFtLUtMv9mZmtRh1xJNsT+K2kXsBS4B/AyIh4O/+JyoWS6kixn0+aTj0dmEpKxg0sT6TXAJdIOomUsMYDF0taDLw3Io6Il/II+E+SuufmHwFPlsX2JeA8SYtybEdHxDJJP8+xzMmJ9lnSHdIXAddL+m9gCvBWUyceEa/lEXJD7mN6Yd2zOYffm5vuBzaPiFfL+rhW0vqk69FfAG7KI2QBpzR1fDMza1+K8CU4W657737Re8T5tQ7DzKxdrK5nF0uaERErPXehw00Xm5mZdRUdcbrYaqh/nzrqa1y1wsysq/BI1szMrEqcZM3MzKrESdbMzKxKfE3WVtAwfyF9R02udRhmZm22uu4obgmPZM3MzKrESdbMzKxKnGTNzMyqpF2SrKTzJJ1ceH2bpHGF17+WVKl0XHP9PpvL0JW3H5wr87Q13pPLa7CuQl/HSHpJqUbt45Ja/ejCxs6zufWSHmztsczMbPVpr5Hsg8DuAJLWADYGdiis350VH2S/SiLi5og4axW6OJlUSq69TIyIgaRSdKdJ+nA79t2oiNi9+a3MzKxW2ivJPkBOsqTkOhd4Q9IH8gP3PwrMktRT0l2SZkpqkDQcQNJ6kiZLekTSXElHFPo+sbD9dnn7YySNycvjJV0o6UFJT+ciAkhaIxd9f1TSJEm3SDo8Fwv4EDBF0pS87VG5/7mSzi4dWNKbkn6R43pY0mZNvQkR8X+kgga98/6bSLpe0vT8s0du30jS7ZJmSfoD6eH9zb0PSFpX0q2Sji/Fl38Pk3S3pOvyaHpCoSLQWZLmSZoj6dyWf6RmZraq2iXJRsTzwFJJW5CS7UOkqji7AUOAORHxNqme6qERsTOpIPuvczI4AHg+IgZExI6kkm0lL+ftfw+cSmW9gT1JlW9KI9zDSIXQ+wNfzbEQEReSiqnvExH7SPoQcDapzupAYBdJh+Q+1gMejogBpOo3xzf1PuTzXweYk5suAM6LiF2AzwGlKfSfAPdHxCBStZwtcntT70NPUvH2qyPikgqHH0QaoW8PbE0q3bchcCiwQ0TsBJzRSNwjJdVLql+2aGFTp2hmZq3Qnjc+lUazpST7UOF16dqhgDMlzQHuBPoAm5FKu+0n6WxJe0VE8V/6G/LvGaSkWclfIuLdiJiX+4OUdK/N7f+PVGqukl2AuyPipYhYCkwA9s7r3mZ5UfSmjn+EpEeBp4ELIqJUnH0/YIyk2aRkukEuQ7c3cBVAREwGSuXqmnofbgIui4grGolhWkQ8l2vNzs6xvk76YjNO0mHAoko7RsTYiBgSEUO69ahrpHszM2ut9kyypeuy/UnTxQ+TRo/F67FHA5sAg/M1zBeBdSLiSWAwKcn8UtKPC/0uyb+X0fjDM5YUllX2uzlNbfdOLK8F2NTxJ0bEDsBepNH5B3P7GsBuETEw//SJiDfyupVqDDbzPjwAHFiaBq6g+B4sA9bMXxqGAtcDh7DiyNjMzKqsvUeyBwGvRMSyiHgF6EVKtA/lbeqABRHxjqR9gC0B8pTtooi4CjgX2Lkd4rkf+Fy+NrsZMKyw7g2WF3afCnxc0saSugFHAfe05YAR8RBwJfCt3HQ78M3SekkD8+K9pC8cSDoQ+EBebup9+DHwf6RC8C0iqSdQFxG3kKaSBzazi5mZtaP2TLINpLuKHy5rWxgRL+fXE4AhkupJSebx3N4fmJanVU+jkWuHrXQ98BxpVP0HUjItTb+OBf4maUpEvAD8gDSd/AgwMyJuWoXjng0cm6eFTyKd7xxJ84AT8jY/BfaWNBPYH/hXbm/ufTgZWEfSOS2MZX1gUp6evwdo9Z8XmZlZ22n5bGjXI6lnRLwpaSNgGrBHvj5rjejeu1/0HnF+rcMwM2uzWjy7WNKMiBhS3t7VCwRMktQLWBv4uROsmZmtTl06yUbEsFrH0Nn071NHfQeqYGFm1pn52cVmZmZV4iRrZmZWJU6yZmZmVdKlr8la6zXMX0jfUZNrHYaZ1UAt7srt6jySNTMzqxInWTMzsypxkjUzM6uSTptkS7VUC6/fqzHbjsf4YTv1c5qk2flnWWH5pPbo38zMOibf+NS0HwJnrmonEfEL4BeQvhzkCkRmZtbFddqRbFMkbSnprvxg/rtyMXUkjZd0eGG7N/Pv3pLuzaPLuZL2knQWsG5um5C3+3ZeP1fSybmtr6THJF0i6VFJt0tatxWxbibphlw0fZqkXXP7RaWRtKTPSJqiZLikqZJm5WNtmrc5Q9IfJd0j6WlJ38jt60v6m6RHctyHNx6NmZm1p86cZEsJcHauWvOzwroxwBURsROp8s+FzfT1BeC2PMIcAMyOiFHA4lwH9mhJg4FjgY8BuwLHSxqU9+8H/C7XlH0N+FwrzuNC4Jz8YOnPA+Ny+3eBL0oaBpwHfCXXtr0X2DUiBpEK2n+n0Ne2wCdzfD/Lpfs+DTwbEQMiYkfgjvIAJI3MSb5+2aKF5avNzKyNOvN08eLitKukY4BSBYTdgMPy8pVAc6XhpgOXSloL+EtEzK6wzZ7AjRHxVj7eDaQi7TcDzxT2mQH0bcV57Ad8pFCL/QOS1o2ItySdAPwdODEinsnrtwD+nAvDdweeLPQ1KSLeBhZIegXYBJgDnJVH5n+NiAfKA4iIsaTyf3Tv3a/rlmUyM1vNOvNItjVKiWMp+ZyVstraABFxL7A3MB+4UtKXK/ShCm0lSwrLy2jdlxcBQ/OIeWBE9ImIxXldf1Kh9g8Vtv8dcF5E9Af+B1inqTgi4jHSl49HgV+1181cZmbWvK6aZB8EjszLRwP35+VngcF5eTiwFqRruMCCiLgE+COwc97mnTy6hTRNe4ikHpLWAw4F7muHWO8EvlF6IWlg/r01qej7QGC4pNIovQ6Yn78kjGiuc0l9gDcj4krgNyw/NzMzq7KummRPAo6VNAf4EvCt3H4J8HFJ00jXVt/K7cOA2ZJmka6nXpDbxwJzJE2IiJnAeFLx96nAuIiY1Q6xfgPYI9+kNY90rVfApcApEfEC8FXgj5K6A6OBG4F7gBdb0P8AYHq+bv092uFuaTMzaxmle2nMku69+0XvEefXOgwzqwE/u7jtJM3IN7CuoKuOZM3MzGrOSdbMzKxKOvOf8FgV9O9TR72njMzM2oVHsmZmZlXiJGtmZlYlni62FTTMX0jfUZNrHYaZVZnvJF49PJI1MzOrEidZMzOzKnGSNTMzqxInWTMzsyrptElW0rJcS/bRXJD825I6xPlIGi1pfo7vcUm/7yixmZnZ6tOZ/+EvFVTfgVSo/NPAT2oRSC6OXu68XO92e1LJuo9X2M93d5uZdWGdOcm+JyIWACOBbyrpJulXkqbn6jZfA5A0TNLdkq7LI8wJefsDJf251F/e7q95eX9JD0maKelaST1z+7OSfizpfuC/mwhvbVLN11fzfndLOlPSPcC3JG0p6a4c512StsjbjZd0oaQHJT0t6fBCfN+T1JBH8GfltoGSHs793CjpA7n9JEnzcvs17famm5lZs7pEkgWIiKdJ57MpcBywMCJ2AXYhlY/bKm86CDiZNMLcGtgDuAPYNdeJBTgCmChpY+BHwH4RsTNQD3y7cNj/RMSeEVEpeZ2Sy8u9ADwZEbML63pFxMcj4tfAGOCKiNgJmABcWNiuN7AncBBQSqYHAocAH4uIAcA5edsrgO/nfhpYPqofBQzK7SdUeu8kjZRUL6l+2aKFlTYxM7M26DJJNlP+vT/w5ZzkpgIbAf3yumkR8VxEvAvMBvpGxFLgVuCzeQr3M8BNwK6kZPxA7msEsGXheBObiKU0XbwpsJ6kIwvrivvtBlydl68kJdWSv0TEuxExD9gst+0HXBYRiwAi4hVJdaTEfU/e5nJg77w8B5gg6YvA0kqBRsTYiBgSEUO69ahr4pTMzKw1usw1QUlbA8uABaRke2JE3Fa2zTBgSaFpGcvfg4mkAuqvANMj4o1cPP2OiDiqkcO+1Uj7eyLiHUm3kpJeacTb1H7FAr/FWFX43ZoiwJ/Jxz4YOF3SDvlLhZmZVVmXGMlK2gS4GBgTqQr9bcDXJa2V129bmApuzN3AzsDxLB9pPgzsIem/cj89JG3bytgE7A78s5FNHgRKo9yjgfub6fJ24CuSeuT+N4yIhcCrkvbK23wJuCff0fzhiJgCfA/oBfRsTfxmZtZ2nXkku26ewl2LNA16JfCbvG4c0BeYmZPcS6TrmI2KiGWSJgHHkKaFiYiXJB0D/ElS97zpj4AnWxDfKXmKdi3SlO1FjWx3EnCppO/mOI9tJs5bJQ0E6iW9DdwC/DDHfHFOvk/nfroBV+XpZJGmsF9rQexmZtYOlAZ+Zkn33v2i94jzax2GmVWZCwS0L0kzImJIeXuXmC42MzPriDrzdLFVQf8+ddT7G66ZWbvwSNbMzKxKnGTNzMyqxEnWzMysSnxN1lbQMH8hfUdNrnUYZlZlvrt49fBI1szMrEqcZM3MzKrESdbMzKxKOl2SlbS5pJskPSXpn5IukLR2M/sMy49MLG8/RtKYdoprtKRTG2mfL2l2ruvaWLGB4j4nSPpyhfa+kua2R7xmZlZ9nSrJ5ucQ30AqAdcP2Jb0wPtf1DSw5pXK3g0H/lAqXNCYiLg4Iq5Y1YNK6raqfZiZWdt1qiQL7EsqlH4ZpIf6A6eQq9Lkkd59kmbmn93LO5C0i6RZuTResf2zkqbmdXdK2iy3j5Z0qaS7JT0t6aTCPqdJekLSncBHmgs+Ip4CFgEfyPsfL2m6pEckXV+orPPeqFjS4Lz+IVIpvtKxu0n6Vd5/jqSv5fZhkqZIuhpokLSepMm5j7mSjmjNG25mZm3X2ZLsDsCMYkNEvA78C/gvUi3ZT0bEzsARwIXFbXPSvRgYHhFPl/V9P7BrRAwi1X39XmHddsCngKHATyStJWkwqUTdIOAwYJfmgpe0M/BURCzITTdExC4RMQB4DDiuwm6XASdFxG5l7ccBCyNil3zs4yVtldcNBU6LiO2BA4DnI2JAROxIKk5fHtdISfWS6pctWtjcaZiZWQt1tr+Tbaxgeal9LWBMLgW3jDSdXPJRYCywf0Q8X6GPzYGJknoDawPPFNZNjoglwBJJC4DNgL2AGyNiEYCkm5uI+xRJxwNbk5JeyY6SzmB5ndfyIvN1QK+IuCc3XQkcmJf3B3aSdHh+XQf0A94GpkVEKf4G4FxJZwOTIuK+8uAiYmx+b+jeu5/LMpmZtZPONpJ9FFihlJCkDYAPk4qinwK8CAzI2xVviHoB+A9p5FnJb0lF3/sDXwPWKaxbUlhexvIvJy1NSOdFxEdIo+srJJX6Hg98Mx/zp2XHhMa/VJTWnRgRA/PPVhFxe173VmmjiHgSGExKtr+U9OMWxmxmZquosyXZu4AepTtv8409vwbG5xFlHfBCRLwLfIlUtLzkNeAzwJmShlXouw6Yn5dHtCCWe4FDJa0raX3gs83tEBE3APWF/tcHXsg3Qh1dYfvXgIWS9sxNxW1uA75euolK0raS1ivvQ9KHgEURcRVwLrBzC87NzMzaQadKspEqzB8K/Lekp4AnSaPTH+ZNLgJGSHqYNFX8Vtn+L5KS4e8kfays+9HAtZLuA15uQSwzgYnAbOB6YKVp2Eb8DPi2pDWA04GpwB3A441sf2yO9yFgcaF9HDAPmJn/rOcPVJ7+7w9MkzQbOA04o4VxmpnZKlLKW2ZJ9979oveI82sdhplVmZ9d3L4kzYiIIeXtnWoka2Zm1pl0truLrcr696mj3t9wzczahUeyZmZmVeIka2ZmViVOsmZmZlXia7K2gob5C+k7anKtwzCzduQ7iWvHI1kzM7MqcZI1MzOrEidZMzOzKukSSVZSSLqy8HpNSS9JmpRfHyxpVDsda5yk7Su0351ry86R9LikMZJ6taC/N9u6jaQTSs9xNjOzjqer3Pj0Fqls3LoRsRj4JMsf9k9E3Aw0VYquxSLiq02sPjoi6iWtDfwSuAn4eHsct5FYLq5W32Zmtuq6xEg2+xupyg7AUcCfSiskHSNpTF7+rKSpkmZJulPSZrl9tKTLJd0u6VlJh0k6R1KDpFsL1W7ulrTS8ymLIuJtUtH3LSQNyPt9W9Lc/HNy+T6Shkm6V9KNkuZJujgXESit/4WkRyQ9XBbzqYW4zpY0TdKTkvbK7Tvkttl5lN2vje+vmZm1UldKstcAR+ZarTuRqttUcj+wa0QMyvt8r7BuG1KiHg5cBUzJtV4XszyBt0hELAMeAbaTNJhUTedjwK7A8ZIq1bUdCnyHVDlnG+Cw3L4e8HBEDCCV2Du+kcOuGRFDgZOBn+S2E4ALImIgqcbuc+U7SRopqV5S/bJFC1tzmmZm1oQuk2QjYg7QlzSKvaWJTTcHbpPUAHwX2KGw7m8R8Q6pwHk34Nbc3pD7bi3l33sCN0bEWxHxJnADsFeF7adFxNM5Qf8p7wfwNjApL89oIpYbKmzzEPBDSd8HtszT6SuIiLERMSQihnTrUdfikzMzs6Z1mSSb3UwqTP6nJrb5LTAmj1C/BqxTWLcEIBd9fyeW1wF8l1Zev84F5fsDj7E82TanvO5g6XUxlmVNxLKkfJuIuBo4mDQav03Svi2MxczMVlFXS7KXAj+LiIYmtqlj+U1RI6oRRL5++0vg33mEfS9wiKQektYjFZ6vVOR9qKSt8rXYI0hT26say9bA0xFxIelLyE6r2qeZmbVMl0qyEfFcRFzQzGajgWsl3Qe83M4hTJA0B5hLuo46PMc1ExgPTCNdKx4XEbMq7P8QcFbe/xngxnaI6QhgrqTZwHbAFe3Qp5mZtYCWz0JaLUkaBpwaEQfVMo7uvftF7xHn1zIEM2tnfnZx9UmaEREr/eVJlxrJmpmZdSRd5WEUnV5E3A3cXeMwzMysHTnJ2gr696mj3lNLZmbtwtPFZmZmVeIka2ZmViWeLrYVNMxfSN9Rk2sdhpm1ke8k7lg8kjUzM6sSJ1kzM7MqcZI1MzOrEidZMzOzKlmtSVbSm23YZ7ykw6sRTxPHHCLpwrxcLPj+XpH0Fvbz3r5mZvb+47uLK4iIeqC+1nGsCklrRsTSWsdhZvZ+ttqniyX1lHSXpJmSGiQNL6z7sqQ5kh6RdGWFfX+eR7ZrSDpL0ry8/bl5/Za57zn59xa5fbykCyU9KOnp0shY0kRJny70P17S5yQNkzSp/PhlsWwj6VZJMyTdJ2m7Zrb/rKSpkmZJulPSZrl9E0l35PfjD5L+V9LGkvpKmlvY/1RJo/Py8ZKm5/fpekk9CvH/RtIU4GxJH5c0O//MkrR+c5+PmZm1n1pck/0PcGhE7AzsA/xayQ7AacC+ETEA+FZxJ0nnAJsCxwK9SDVZd4iInYAz8mZjgCty2wTgwkIXvYE9gYNI5eQAriGVgkPS2sAngFtaeB5jgRMjYjBwKnBRM9vfD+waEYPycb+X238C/D2/HzcCW7Tg2DdExC75fXoMOK6wbltgv4j4To7rGxExENiLVLh9JZJGSqqXVL9s0cIWHN7MzFqiFtPFAs6UtDfwLtAH2AzYF7guIl4GiIhXCvucDkyNiJEAkl4nJetxkiYDpVHnbsBheflK4JxCH3+JiHeBeaVRJPA34EJJ3YEDgHsjYrGkpk9A6gnsTqpLW2ru3sx5bw5MlNQbWJtULxZS4j80n/Otkl5tph+AHSWdQfqy0RO4rbDu2ohYlpcfAH4jaQIpMT9XqbOIGNmQt08AABPmSURBVEv60kD33v1c+9DMrJ3UYiR7NLAJMDiPsF4E1iEl38b+gZ8ODJa0IUC+1jgUuB44BLi1kf2K/S0pLCv38x9S5ZtPkUa017TwHNYAXouIgYWfjzazz2+BMRHRH/ga6Zzfi6WCpaz4+axTWB4PfDP39dOydW+VFiLiLOCrwLrAw81NaZuZWfuqRZKtAxZExDuS9gG2zO13AZ+XtBFAKaFmt5KmeCdLWj+PJOsi4hbgZGBg3u5B4Mi8fDRpirY515CmoPdixRFhoyLideAZSf+dY5WkAc3sVgfMz8sjCu33A5/P/ewPfCC3vwhsKmmjPNIuFnNfH3hB0lqk86xI0jYR0RARZ5Nu5HKSNTNbjVZbkpW0Jmk0OQEYIqmelCAeB4iIR4FfAPdIegT4TXH/iLgWuAS4mZRkJkmaA9wDnJI3Owk4Nrd/ibLruo24HdgbuDMi3m7FKR0NHJdjfRQYXmGb0jkDjCZNL98HvFzY5qfA/pJmAgcCLwBvRMQ7wM+AqaTp8McL+5ye2+8oay93sqS5OcbFpOlxMzNbTRSxei7B5ZHeJRExdLUcsAOQdB7wVEQ0elNUHqUui4ilknYDfp+n0Wuie+9+0XvE+bU6vJmtIhcIqA1JMyJiSHn7arnxSdIJpFHmyavjeB2BpL+RbnAa3cymWwB/lrQG8DZwfJVDMzOz1WS1jWStcxgyZEjU13fq53CYma12jY1k/exiMzOzKnGSNTMzqxInWTMzsypxgQBbQcP8hfQdNbnWYZi9b/hu4K7NI1kzM7MqcZI1MzOrEidZMzOzKqlFPdllub7pXEnXSupRXju1bPufSdovL98taaW/Q2riWC2pC7tK20gaJ2n7VsQ0XtIzhTqvD7Z03wp9PStp47bub2Zm1VWLG58Wlx4bmEuwnQDc0NjGEfHj1RVYW0TEV9uw23cj4rp2D8bMzDqUWk8X3wf8V17uJukSSY9Kul3SuvDeyO/w8h0l/T4XGn9U0k8L7QdIelzS/SyvLYuk9SRdKmm6pFmSVnqgv6TRkq6U9HdJT0kqPuKwp6Trct8TlAvJFkfXjcXUEpKGSnowx/agpI/k9h6S/ixpjqSJkqZWGs1L+qKkaXl0/AdJ3fLP+Dxr0CDplJWPbGZm1VKzP+HJVXkOZHkt2H7AURFxvKQ/A58Drmqii9Mi4hVJ3YC7JO0EPEmq1LMv8A9gYnF74O8R8RVJvYBpku6s0O9OwK7AesAspaLwAIOAHYDnScXQ92DlUnorxRQRcyoc41eSfpSXH42IUjWivXOhgP2AM/N78D/AqxGxk6QdgdnlnUn6KKke7h65hOBFpCpBjwJ9ImLHvF2vCrEgaSQwEqDbBptU2sTMzNqgFkl2XUmlRHEf8EfgQ8AzEVFqnwH0baafz+fksCbQG9ieNDJ/JiKeApB0FTl5APsDB0s6Nb9eh/Rw/nI3RcRiYLGkKaTi8K8B0yLiudzv7BxfeZKtFFOlJFtpurgOuFxSP1Kx+bVy+57ABQARMTeX8Sv3CWAwMD0PsNcFFgB/BbaW9FtgMqms30oiYiwwFlIVnkrbmJlZ69X0mmxJTgxLCk3LSImiIklbAacCu0TEq5LGk5ImpARVcTfgcxHxRFlfm5VtV75/6XV5fCu8d83E1BI/B6ZExKGS+gJ3F+JujoDLI+IHK61IJQY/BXyDVBz+K62IyczMVkGtr8m21QbAW8DCnCQPzO2PA1tJ2ia/Pqqwz23AiYVrqYMa6Xu4pHUkbQQMA6avYkwtVQfMz8vHFNrvJyVH8l3M/SvsexdwuKRN83YbStoy33m8RkRcTyr0vnMrYzIzs1XQKR+rGBGPSJpFuub4NOkaKRHxnzxdO1nSy6QEtWPe7efA+cCcnGifBQ6q0P000tTqFsDPI+J5Sdu2NaZGFK/JQpqSPoc0Xfxt4O+FdRfl9jnALNL088KyY8/L/d2uVJf2HdLIdTFwWW4DWGmka2Zm1eN6sgWSRgNvRsS5tY6lJN9EtVb+ArENadS6bUS8XY3jde/dL3qPOL8aXZtZBX52cdegRurJdsqR7PtMD2CKpLVI116/Xq0Ea2Zm7csjWVvBkCFDor6+vtZhmJl1Ko2NZDvrjU9mZmYdnpOsmZlZlTjJmpmZVYlvfLIVNMxfSN9Rk5vf0Mya5LuGDTySNTMzqxonWTMzsypxkjUzM6uS1Z5kJYWkXxden5qftNSex9gh14R9MteFPb30zOIK2w6TNKk9j9/CGDeTNEnSI5LmSbqlBfs82IJtTpbUo32iNDOzVVGLkewS4LD88Pp2p1Ts/WbgrIjYFhgA7E6qy1q+bS1v/PoZcEdEDIiI7YFRze0QEbu3oN+TSU+JMjOzGqtFkl1Kql16SvkKSZtIul7S9PyzR25vkNRLyf9J+nJuvzIXOC/6AvBARNwOEBGLgG+Sk5ik0ZLGSroduKLs+OtJujQfe5ak4bm9r6T7JM3MP7vn9mGS7pZ0naTHJU0oVPk5K49Q50iq9Czk3sBzpRel4u6Sekq6Kx+noRRDXvdmU8eVdBKpNu8USVMkdZM0XtLc3NdK77mZmVVPrUZyvyNVwzmnrP0C4LyIuF/SFqTydB8lVbTZA/hfUoWbvUgJclfg62V97EAq+v6eiPhnTl4b5KbBwJ4RsVjSsMKmpwF/j4ivSOoFTJN0J6kA+ifzQ/r7AX8CSo/PGpSP+XwpTknzgEOB7SIicl+V3oOJkr4J3AlcFhHPA/8BDo2I1/No/2FJN8fKz79c6bgRcWGu4rNPRLwsaTDQJyJ2BGgkDnLlopEA3TbYpNImZmbWBjW58SkiXiclyZPKVu0HjJE0mzTlu4Gk9YH7gL3zz++B/pL6AK9ExJtlfYjGC7eX2m+OiMUV1u8PjMrHv5tUdH0LYC3gEkkNwLXA9oV9pkXEcxHxLjAb6Au8TkqW4yQdBiyq8B7cBmwNXAJsB8yStEmO/8xc2u5OoA9QXli+seOWexrYWtJvJR2Q41r5TYkYGxFDImJItx51lTYxM7M2qOU1yfOBmcBlhbY1gN3KE6Cke0n1UbcgjTYPBQ4nJd9yj5KScXH/rUkl7N7Is7lvNRKTgM9FxBNl+48GXiRd312DlEBLlhSWlwFrRsRSSUOBTwBHkqar9y0/WES8AlwNXJ1vvtobWB/YBBgcEe9IepaU7MutdNwK/b8qaQDwKdL793ngK42cu5mZtbOa/QlPTjB/Bo4rNN9OSkgASBqYt/03sDHQLyKeJhVjP5XKSXYCsGfpWm2+EepCUlH05twGnFi4rjoot9cBL+RR45eAbk11IqknUBcRt5BuRBpYYZt9S3cB59H6NsC/8rEW5AS7D7BlC+IueoOUqMnTzWtExPXA6cDOrezLzMxWQa3/TvbXpORZchIwJN8sNA84obBuKvBkXr6PNI16f3mHeRQ8HPiRpCeABmA6MKYF8fycNDU8R9Lc/BrgImCEpIeBbWl8JFyyPjApT/neQ4WbvEjXhevzNg8B4yJiOulLwhBJ9cDRwOMtiLtoLPA3SVNI79Hdefp7PPCDVvZlZmarwPVkbQXde/eL3iPOr3UYZp2en138/iLXkzUzM1u9nGTNzMyqxKXubAX9+9RR72kuM7N24ZGsmZlZlTjJmpmZVYmni20FDfMX0nfU5FqHYdYp+Y5iK+eRrJmZWZU4yZqZmVWJk6yZmVmVdIgkW6qTmpc/LempXOqu5iQNlXSvpCdy7dZxknpIOlhSqUbtIZK2b66vCn2fmvucK+mRQp3cZ1WhqH3xmE302V3SnZJmSzqitTGZmVn76VA3Pkn6BPBbYP+I+FcHiGczUmm7IyPioVw44HPA+hFxM6kcH8AhwCRgXiv6PgH4JDA0146ty/00quyYjRkErBURKxUlMDOz1atDjGQBJO1Fqq36mYj4Z277rKSpkmbl0dlmuX20pEsl3S3paUkn5fb1JE3Oo8K5pZGcpB9Lmp7bxhaq7JwkaV4uSHBNhbC+AVweEQ8BRHJdRLwo6RhJYyTtDhwM/CqPHreRNLNwXv0kzajQ9w+B/8m1dYmIhRFxeWH9iZJmSmqQtF3u6xhJY/LyJpKuz+c1XdIekjYFrgIGFmI5q3CO57bx4zEzszboKEm2O3ATcEhEFKvO3A/sGhGDgGuA7xXWbUeqkzoU+ImktYADgOcjYkBE7AjcmrcdExG75LZ1gYNy+yhgUETsxIoVf0p2BColyPdExIOk0eV3I2Jg/oKwsFSmDziWVAHnPbm03fqlLxONeDkidiYVqT+1wvoLgPMiYhfS6HpcRCwAvgrcl0eyr5Jq7+6Qz/GMps7FzMzaV0dJsu8AD7JibVmAzYHbJDUA3wV2KKybHBFLIuJlYAGwGams3X6Szpa0V0QszNvuk0fEDaTi6aV+5gATJH0RWNqO5zMOOFZSN+AIUmH2IgHNlT+6If+eAfStsH4/YEwuY3czsEFO3kWvkwrMj5N0GLCo0oEkjZRUL6l+2aKFlTYxM7M26ChJ9l3g88Aukn5YaP8taRTaH/gasE5h3ZLC8jJgzYh4klSntQH4ZZ4mXodUD/bw3M8lhX4+A/wu7zNDUvk16kfzuta6HjiQNGKeERH/V1yZp4jfkrR1E32Uzm8Zla+drwHslkfPAyOiT0S8UXacpaSR/vWk6723VuiHiBgbEUMiYki3HnUtOD0zM2uJjpJkiYhFpKR0tKTSiLYOmJ+XRzTXh6QPAYsi4irgXGBnlifUlyX1BA7P264BfDgippCmoXsBPcu6HEMq1v6xwjG+KOmDZdu9QSrUXjqX/wC3kaZ6L2sk3F8Cv5O0Qe53A0kjmzvHgtuBbxbiWulGp3y+dRFxC3Ay4JuhzMxWow51d3FEvCLpAOBeSS8Do4FrJc0HHga2aqaL/qQbkN4lTUF/PSJek3QJaXT7LDA9b9sNuCrf1SvS9c3XyuJ5UdKRwLn5pqJ3gXtZPpVbcg1wSb4B6/B8rXUCcBgpGVbye1JSny7pnRzvr5s5v6KTSEl6DulzvJeVryuvD9yUR/MCTmlF/2ZmtooU0dylQWsLSaeSRpGn1zqW1ujeu1/0HnF+rcMw65T87OL3L0kzImJIeXuHGsl2FZJuBLYh3WRlZmbvU06yVRARh9Y6BjMzqz0nWVtB/z511HvKy8ysXXSYu4vNzMy6GidZMzOzKnGSNTMzqxInWTMzsypxkjUzM6sSJ1kzM7MqcZI1MzOrEidZMzOzKnGSNTMzqxIXCLAVSHoDeKLWcbSDjYGXax1EO/B5dDxd5Vx8Hu1ry4jYpLzRj1W0ck9UqiTR2Uiq93l0HF3lPKDrnIvPY/XwdLGZmVmVOMmamZlViZOslRtb6wDaic+jY+kq5wFd51x8HquBb3wyMzOrEo9kzczMqsRJ1szMrEqcZA0ASQdIekLSPySNqnU8LSXpw5KmSHpM0qOSvpXbN5R0h6Sn8u8P1DrWlpDUTdIsSZPy660kTc3nMVHS2rWOsSUk9ZJ0naTH82ezW2f8TCSdkv+7mivpT5LW6SyfiaRLJS2QNLfQVvEzUHJh/v9/jqSdaxf5iho5j1/l/7bmSLpRUq/Cuh/k83hC0qdqE/VyTrKGpG7A74ADge2BoyRtX9uoWmwp8J2I+CiwK/CNHPso4K6I6AfclV93Bt8CHiu8Phs4L5/Hq8BxNYmq9S4Abo2I7YABpHPqVJ+JpD7AScCQiNgR6AYcSef5TMYDB5S1NfYZHAj0yz8jgd+vphhbYjwrn8cdwI4RsRPwJPADgPz//pHADnmfi/K/bzXjJGsAQ4F/RMTTEfE2cA0wvMYxtUhEvBARM/PyG6R/zPuQ4r88b3Y5cEhtImw5SZsDnwHG5dcC9gWuy5t0lvPYANgb+CNARLwdEa/RCT8T0gN71pW0JtADeIFO8plExL3AK2XNjX0Gw4ErInkY6CWp9+qJtGmVziMibo+Ipfnlw8DmeXk4cE1ELImIZ4B/kP59qxknWYOUlP5deP1cbutUJPUFBgFTgc0i4gVIiRjYtHaRtdj5wPeAd/PrjYDXCv+YdJbPZWvgJeCyPPU9TtJ6dLLPJCLmA+cC/yIl14XADDrnZ1LS2GfQmf8N+Arwt7zc4c7DSdYAVKGtU/1tl6SewPXAyRHxeq3jaS1JBwELImJGsbnCpp3hc1kT2Bn4fUQMAt6ig08NV5KvVw4HtgI+BKxHmlYt1xk+k+Z0yv/WJJ1GumQ0odRUYbOanoeTrEH6tvfhwuvNgedrFEurSVqLlGAnRMQNufnF0nRX/r2gVvG10B7AwZKeJU3X70sa2fbKU5XQeT6X54DnImJqfn0dKel2ts9kP+CZiHgpIt4BbgB2p3N+JiWNfQad7t8ASSOAg4CjY/kDHzrceTjJGsB0oF++a3Jt0o0DN9c4phbJ1y3/CDwWEb8prLoZGJGXRwA3re7YWiMifhARm0dEX9L7//eIOBqYAhyeN+vw5wEQEf8P+Lekj+SmTwDz6GSfCWmaeFdJPfJ/Z6Xz6HSfSUFjn8HNwJfzXca7AgtL08odkaQDgO8DB0fEosKqm4EjJXWXtBXpRq5ptYjxPRHhH/8AfJp0l94/gdNqHU8r4t6TNB00B5idfz5Nup55F/BU/r1hrWNtxTkNAybl5a1J/0j8A7gW6F7r+Fp4DgOB+vy5/AX4QGf8TICfAo8Dc4Erge6d5TMB/kS6lvwOaYR3XGOfAWma9Xf5//8G0h3VNT+HJs7jH6Rrr6X/5y8ubH9aPo8ngANrHb8fq2hmZlYlni42MzOrEidZMzOzKnGSNTMzqxInWTMzsypxkjUzM6sSJ1kzM7MqcZI1MzOrkv8Pf13EdZvlVywAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.barh(y = ser_equipo.index[10::-1], width = ser_equipo[10::-1])\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" PF | \n",
" UR | \n",
" UC | \n",
" PF+UR+UC | \n",
"
\n",
" \n",
" Team | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" Denver Broncos | \n",
" 0 | \n",
" 10 | \n",
" 0 | \n",
" 10 | \n",
"
\n",
" \n",
" Buffalo Bills | \n",
" 0 | \n",
" 9 | \n",
" 0 | \n",
" 9 | \n",
"
\n",
" \n",
" Tampa Bay Buccaneers | \n",
" 0 | \n",
" 8 | \n",
" 0 | \n",
" 8 | \n",
"
\n",
" \n",
" Seattle Seahawks | \n",
" 0 | \n",
" 7 | \n",
" 0 | \n",
" 7 | \n",
"
\n",
" \n",
" Pittsburgh Steelers | \n",
" 0 | \n",
" 5 | \n",
" 0 | \n",
" 5 | \n",
"
\n",
" \n",
" Washington Redskins | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 4 | \n",
"
\n",
" \n",
" Kansas City Chiefs | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 4 | \n",
"
\n",
" \n",
" Jacksonville Jaguars | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 4 | \n",
"
\n",
" \n",
" New York Jets | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 4 | \n",
"
\n",
" \n",
" New Orleans Saints | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 4 | \n",
"
\n",
" \n",
" Baltimore Ravens | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 4 | \n",
"
\n",
" \n",
" San Francisco 49ers | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 3 | \n",
"
\n",
" \n",
" Cincinnati Bengals | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 3 | \n",
"
\n",
" \n",
" Tennessee Titans | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 3 | \n",
"
\n",
" \n",
" Philadelphia Eagles | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 3 | \n",
"
\n",
" \n",
" Oakland Raiders | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 3 | \n",
"
\n",
" \n",
" Carolina Panthers | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 2 | \n",
"
\n",
" \n",
" LA | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 2 | \n",
"
\n",
" \n",
" Atlanta Falcons | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 2 | \n",
"
\n",
" \n",
" Minnesota Vikings | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 2 | \n",
"
\n",
" \n",
" New England Patriots | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 2 | \n",
"
\n",
" \n",
" San Diego Chargers | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" Arizona Cardinals | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" Miami Dolphins | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" Indianapolis Colts | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" Green Bay Packers | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" Detroit Lions | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" Dallas Cowboys | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" Chicago Bears | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" LAC | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 1 | \n",
"
\n",
" \n",
" New York Giants | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" Houston Texans | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" Saint Louis Rams | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" Cleveland Browns | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PF UR UC PF+UR+UC\n",
"Team \n",
"Denver Broncos 0 10 0 10\n",
"Buffalo Bills 0 9 0 9\n",
"Tampa Bay Buccaneers 0 8 0 8\n",
"Seattle Seahawks 0 7 0 7\n",
"Pittsburgh Steelers 0 5 0 5\n",
"Washington Redskins 0 4 0 4\n",
"Kansas City Chiefs 0 4 0 4\n",
"Jacksonville Jaguars 0 4 0 4\n",
"New York Jets 0 4 0 4\n",
"New Orleans Saints 0 4 0 4\n",
"Baltimore Ravens 0 4 0 4\n",
"San Francisco 49ers 0 3 0 3\n",
"Cincinnati Bengals 0 3 0 3\n",
"Tennessee Titans 0 3 0 3\n",
"Philadelphia Eagles 0 3 0 3\n",
"Oakland Raiders 0 3 0 3\n",
"Carolina Panthers 0 2 0 2\n",
"LA 0 2 0 2\n",
"Atlanta Falcons 0 2 0 2\n",
"Minnesota Vikings 0 2 0 2\n",
"New England Patriots 0 2 0 2\n",
"San Diego Chargers 0 1 0 1\n",
"Arizona Cardinals 0 1 0 1\n",
"Miami Dolphins 0 1 0 1\n",
"Indianapolis Colts 0 1 0 1\n",
"Green Bay Packers 0 1 0 1\n",
"Detroit Lions 0 1 0 1\n",
"Dallas Cowboys 0 1 0 1\n",
"Chicago Bears 0 1 0 1\n",
"LAC 0 1 0 1\n",
"New York Giants 0 0 0 0\n",
"Houston Texans 0 0 0 0\n",
"Saint Louis Rams 0 0 0 0\n",
"Cleveland Browns 0 0 0 0"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Equipo con el mayor número de faltas\n",
"#dentro de ciertas categorías\n",
"#PF = Personal Foul\n",
"#UR = Unnecessary Roughness\n",
"#UC = Unsportsmanlike Conduct\n",
"categorias = ['PF', 'UR', 'UC']\n",
"str_categ = '+'.join(categorias)\n",
"gr_equipo = df_penal.groupby('Team')\n",
"df_eq_categ = gr_equipo.sum()[categorias]\n",
"df_eq_categ[str_categ] = df_eq_categ.sum(axis = 1)\n",
"df_eq_categ.sort_values(by = str_categ, ascending = False, inplace = True)\n",
"df_eq_categ\n",
"\n",
"#Para validar\n",
"#df_penal.loc[df_penal['Team'] == 'Was', categorias].sum(axis = 0)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" PF | \n",
" UR | \n",
" UC | \n",
" PF+UR+UC | \n",
"
\n",
" \n",
" Player | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" Jerry Hughes | \n",
" 0 | \n",
" 5 | \n",
" 0 | \n",
" 5 | \n",
"
\n",
" \n",
" Ryan Jensen | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 4 | \n",
"
\n",
" \n",
" Darryl Skrine | \n",
" 0 | \n",
" 4 | \n",
" 0 | \n",
" 4 | \n",
"
\n",
" \n",
" Derek Barnett | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 3 | \n",
"
\n",
" \n",
" Brandon Browner | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" 3 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" Isaiah Oliver | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" J.J. Watt | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" Ja'Wuan James | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" Jadeveon Clowney | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" Zach Strief | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
181 rows × 4 columns
\n",
"
"
],
"text/plain": [
" PF UR UC PF+UR+UC\n",
"Player \n",
"Jerry Hughes 0 5 0 5\n",
"Ryan Jensen 0 4 0 4\n",
"Darryl Skrine 0 4 0 4\n",
"Derek Barnett 0 3 0 3\n",
"Brandon Browner 0 3 0 3\n",
"... .. .. .. ...\n",
"Isaiah Oliver 0 0 0 0\n",
"J.J. Watt 0 0 0 0\n",
"Ja'Wuan James 0 0 0 0\n",
"Jadeveon Clowney 0 0 0 0\n",
"Zach Strief 0 0 0 0\n",
"\n",
"[181 rows x 4 columns]"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Jugador con el mayor número de faltas\n",
"#dentro de ciertas categorías\n",
"#PF = Personal Foul\n",
"#UR = Unnecessary Roughness\n",
"#UC = Unsportsmanlike Conduct\n",
"categorias = ['PF', 'UR', 'UC']\n",
"str_categ = '+'.join(categorias)\n",
"df_jug_categ = gr_jugador.sum()[categorias]\n",
"df_jug_categ[str_categ] = df_jug_categ.sum(axis = 1)\n",
"df_jug_categ.sort_values(by = str_categ, ascending = False, inplace = True)\n",
"df_jug_categ"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAEICAYAAADGN1rFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3dd7hcVdn+8e9NQEpCEjEBQyhRCERqICFKFRAQAQEFX/AVpSMKIirwgqiADRV/gIhKU5HeQQi9RQgkkBPSQxFCQAwQakjohOf3x1pDdiYzp+WcM5M59+e6znVmdln72XvKM2vtPfMoIjAzM2tkS9U6ADMzs87mZGdmZg3Pyc7MzBqek52ZmTU8JzszM2t4TnZmZtbwnOwajKRLJJ1c6zjqgaTRkg5o57qdfhwl7SBpZmduoyO193hKWluSv+MESOohaZ6kNWodS3fjZFenJM2U9HZ+YZT+Vm1jG0vUm6m1n6TnJG1b6zjqnaSlJYWkQbXYfkTMj4heEfFsR7abH//S+8ULkv4mqWeeN1rSO2XvJZu1oe2KH1aKHwglHSJpfm57jqQJkr7Ujv2o+J5V/kFL0hBJ10h6RdLrkiZKOlpS1ZzmZFffvpxfGKW/WbUOyJZMkpaudQzdXRc8Bl+KiF7AZsDmwAmFeYeXvZeMqxDfJZL2W4zt35+3/3HgAuAqSStWWjAnr63asxFJg4GxwAxgg4joC3ydtM8rVFvPyW4JI2mp/InmhfyJZpSkz1RYrg9wE7BG4dPcypI2lzQ2r/u8pLMkLVNo+yxJs/Ons8mS1qsSxyGSHpU0V9JTkg4pm//V/GnrDUlPStopT1+oByLpl5IuzLfXzp+6D8jLvSrpUEmflTQlx/yHSusW168S72BJ9+ZPgi9Lujgfo9L8YTneuZIuB5YtzPuEpFskvSTpNUk3SRpYmH9w7onPlTRD0r5VYlghb/c1SdOAYWXzV5N0fd7O05KOKNvXy/Mb0lxJUyVtmuddDqwK3Jof5x8WjuWBkp4F7sjL7ilpWj6W90hat1KsedmdJT2enwt/AFQ2/xBJj+X9uVXS6tXaqrBexedOfo7ekuN7VdJ9zbSzoaS78nIvSDouT6/6HAdK7U3Lx2qvvM7ukibldUZL2qCwneGF58YVkq5WYYhb0uH5Of6KpBskDcjTS73I70p6EnhMZT3LvN1S289K+mmh3RUkXaYFvZeHJfVr6fhGxH+A24ANWlq2M0TEh8DFQC9g7U7YxC+Af0XEcRHxfN7moxGxT0TMq7aSk92SaSQwGPgkMJX0xFpIRMwBvgw8W/g0Nxv4APg+0A/YEtgZ+HZe7UvA53LbHwf2BV6tEsOLwK5Ab+BQ4I+SNgKQtAXwN+BHQF9gO+CZNuzfcGAtYD/gLOB4YHvSi3c/SVu2oa0SAb8EBgDrAZ8GfprjXRb4Z455pXx7z8K6SwHnA2sAawLvA3/I6/YGTgd2jIgVScd0cpUYfg6snre9C7D/R8FJPUiP6zhgILAjcKykLxTW35P0WPcFbiUdGyLi68As8if7iDi9sM42wBBgV6UPRZcA3wP6A3cBNxUSwYKDJa0MXEM69v2A54DPFubvDRwL7JHbegi4rMp+l6v63MltzshtfpL8GFWIr08pftJjug4wKs9u7jm+Tf6/fj5W1yoN6Z0PHAJ8gvQ8+Kekj+Xnxg2knspKwLUUnhtKH+J+DuxNetxmAZeWhbs7qbe1YYVdmUd6nvchvV6/L2m3PO9AUk9ltRzXd4F3Kh2PsmOzBum1PKGlZTuDUg/2QOA94D+dsIkdSM/NtokI/9XhHzCT9EJ4Pf/dUGW5fkAAPfP9S4CT8+0dgJktbOcY4Op8eyfgMdKb2lJtjHckcES+/VfgtCrLPQdsW7j/S+DCfHvtvC+rFObPAfYq3P8ncGT5usX1C/dHAwdUiWNvYFy+vT3pRanC/IdLx7HCusOBl/Lt3vnx+QqwXAvH6Flgh8L975YeH9Kb8oyy5X8KnF/Y19sK8zYC5jVzXEvHco3CtFOAywr3lwJeALaqEOtBwOiyZZ8vHU/gTmD/wvylgXeBgRXaWuhxaeG582vgOmCtFo7lN4GmVj43i8/xpfNxGVSYfz5wUtk6T+XHZHvSB8bivLEseI39A/h1YV5vYD4pQZW2tU3ZcVpo+2Vtn01+7QCH5efwhq3Yx+dY8H7xTG5nucLr4C0WvJc8XKWNS4D9Wvv4sfB7zSGkDxmvkz4MvkXhdVth3dFVnncV37MovJaBDym8jlr7555dfdszIvrmvz3ho6u5fpeHy94AnszLtji8kdcfIunmPOzzBulTaT+AiLgDOAf4C/CipHNUfcx9N0kP5SGk10mJshTD6qQ3i3aJiBcLd98m9QSK93u1tU1Jn5R0laT/5v2+kAXxrgo8F/mVlD1TWLenpAvyMNMbwD0sOGZvkM4XHAG8IGmkpHWqhDGAhT/pFnu7a5KGnF8v/QHHkXo3JS8Ubr8F9GzFrhe3t2pxm5GGm54j9UjKrVpct7BsMd4/FWJ9mfQmtFpLAbXw3PlNjvHuPMR5bJVmVmfBc7+8/arP8SrWBP6v7NgPIB2XVcv2G5o/pm8Ar7HwMa3au8lDrqOUhq7nkJJGKdYLSb3X0vP2N2r+vN9u+b1izYg4MiKKvcDvFt5LRhS2P62wz/8DnFs4DmflxT7Iy5aPACxDSmwloyOdP1sJuAX46Jxcft8qHt/PkYbdS9OOKWxrkZGGsm29Snp82sTJbsnzLdIQ2PakoY/SmLgqLFvp/NW5pKHPtSOiN/Cz4roRcWZEbEoaMlwP+GF5A5KWJw0jnErqhfUlnRMqtfMf0jBkJW+y8EnkT1ZZrjXa0tZvST2PDfN+H8CCeJ9n0Tfp4qXhxwGfAkbkdbcvLhgRt0bEDqQX4JOkY1zJC6Q36Urb+A/w78IbUt+IWDEivtzMPi0URsWJCyfwWaQ3diCdoyXt938rrPp8MdbCssV4Dy6Ld/mIeKi5IFt67kTEGxHxg4gYRBou/D9Jn6/QVHPPseae45WO03+AU8r2ZYWIuIrKz43iY1h+TFcknQIoHtPmvnZxBWlodPWI6EMaLi0di/ci4uSI+AwpcXwF+EYzbbVZRKxf2mfgKuDbhWNwVF7sv6Te6qCy1T9FhdMTETEX+A5wcGl4OtJVqH0L2xpLGnYvTft9Xv1ZYGVJH72uJYl0jEvbugvYq6376mS35FmR9Kb9CumN/lfNLPsi0K+sd7YiaWjwzXwOp3QuA0kj8t/SpETyHulJXm5Z4GPAS8D8fI6heG7pr8AhkrZTuuhlNS24EGIisG8+UT8C+Gqr93xRE4HPS1pdUl/S+aVqVsz7NEfpQopjCvNGA0tJOjLH9TVg07J13wJek/QJ0psnAJIGSPpyfnG+l7dR6ZhBejP5saS++bzKkYV5Y4D3JP1I0nL5k/CGkoZVbmoRL5LOBTbnKmB3SdvmT+nHAnNJ59vKjQSGStojPx9+QDqPVnIOcGJ+DpH3ae9WxNnscycfy7XyG9wc0rGsdDxvJPWEj8zn1nrn5xM08xyPiPmk107xWJ0HHCFpMyW9chw9Sc+NHpK+k58be7HwhUWXk9/Ulc7vnUq6KrG8N1jNisCrEfGOpM+RzpOXjsX2kjbIHzTeIPVsqj23Ok1EvA9cD/xa0kqSlpH0TdK5/durrPMS6dxnxXOuzXiadK7xN3lEZTnS6/pN0vlsSK+/bSWdKumTAJLWUbqYp+qoj5PdkufvpE+Ts4BpwIPVFoyIqaRPjTPzUMHKpItG9ie9yZ0LXFlYpS8pUb1OOmf4PHBGhXZfJ735XU8aUtib9OZYmv8g6cKDs0hvOvey4NPwiaQLJl4nvRBae1FDJbflGKaQzrHd2MyyJwEjcjw3ko5LKd53SZ+aDyUNQX2VdFFCyemkXvQrpON9a2FeD1LSeD7P34KFk1h5DM+Tju2twEWFGD4g9dhH5Pkvkx6f3s3sU9GvgVPy43x0pQUiYhrpsf8LKdnsDOye38zKl30R2Ac4Le/XGhSSYkRcTTouV+ehwsnAF1sKsqXnDrAuaZh4HvAA8IeIGF2hnTmki3j2AmYDTwClHmBzz3FIj8Nl+Vh9NfdGv5OPy2u5rf3ydkrPjcPzvP8hDdG9m+ffRhomvZ702K5B23pf3wFOlTQX+DHpA0nJqqTzl2+QXut3kZJrLRxOOp5TSMf728AuOalVcwbpw9X6rd1IHokoXewzgzSE/Hlg1/xYEBFPkL5msA4wPQ+LXkXqLb5VrW0tPMphZmbNkTQeODMiFrkK2uqXe3ZmZs3Iw76r5GHMg0kjE3fUOi5rG/+qgplZ8z5DGgrtSbrKeK+yK4ZtCeBhTDMza3gexjQzs4bnYcw61K9fvxg0aFCtwzAzW6KMHz/+5YjoX2mek10dGjRoEE1NTbUOw8xsiSKp6m/wehjTzMwanpOdmZk1PCc7MzNreE52ZmbW8JzszMys4TnZmZlZw3OyMzOzhudkZ2ZmDc9fKq9DU/47h0HH31zrMMzMutTM3+zaaW27Z2dmZg3Pyc7MzBqek52ZmTW8mic7SfO6YBujJA0v3B8kaepitHehpL07JjozM+tsNU92raVkqbJpPWoVj5mZLTnqJtlJOlbSOEmTJZ2Spw2S9KikPwOPAKtLmifp55IeAn4i6fpCGztKuq6N2z1A0tmF+yMlbZtvHyzpidwzPL+4HLCNpAclzSj28qrsR09JN0uaJGmqpH3acYjMzKyd6uKrB5J2AgYDIwABN0raBngWWBc4MCK+m5ftCUyNiJ9JEvCopP4R8RJwIPD3Kpu5VNLb+fbHgA9biGlV4KfApsBc4B5gUmGRAcBWwBDgRuCaZvajPzArInbNbfdp3ZExM7OOUC89u53y3wRSD24IKWkAPBMRYwvLzgeuBYiIAC4G9pPUF9gcuLXKNr4REUMjYiiwSytiGgH8KyJejYj3gavL5t8QER9GxHRglRb2Ywqwg6TfSto6IuaUb0zSYZKaJDXNf2uR2WZmthjqomdH6gWdGhHnLjRRGgS8WbbsOxExv3D/78BNwDvA1RHxQRu3/QELJ/3lCjE1591iqIX/i+wHgKRhpCR7qqQ7IuLnxfkRcR5wHsCyAwZH68M3M7OW1EvP7nbgIEm9ACQNlLRya1aMiFnALOAnwIXt2PZMYKikpSStTurRATwMfF7SxyUtDezVirYq7kceEn0rIi4Bfk8aGjUzsy5S055dTiLvRsQdkj4DjEmn4ZgH7EcasmyNS4H+eUixrR4AniYNNU4lDT8SEf+V9GvgIVIynQ40O77YzH6sDZwm6UPgfeA77YjTzMzaSem0V402Lm0MnB8RI1pcuPl2zgYmRMRfOyayj9rtFRHzclK+HvhbRFzf0nqLa9kBg2PA/md29mbMzOrK4v42pqTxETG80ryaDWNKOhy4nDT8uDjtjAc2Ai7piLjKnCxpIqnH9zRwQydsw8zMOlnNhjEj4hzgnA5oZ1gHhFOt7WM6q20zM+s69XI1phVsOLAPTZ1Y6sLMrLupl6sxzczMOo2TnZmZNTwnOzMza3g+Z1eHpvx3DoOOv7nWYZhZF1vcS++tOvfszMys4TnZmZlZw3OyMzOzhlc3yU7SfEkTc3HTm3LJns7c3oXFoqtmZta46ibZAW/nenMbAK8CR9Q6IDMzawz1lOyKxgADASRdLGmP0gxJl0raXdIgSfdLeiT/bZHnbytplKRrJD2Wl2+2Np2kYZL+JWm8pNslDcjTR+WCqw9LekLS1nn6+nnaREmTJQ3O0/crTD9XUo88fZ6kX0maJGmspFWqR2NmZh2t7pJdThBfAG7Mky4ADszz+gBbALcAs4EdI2JTYB/grEIzmwBHA+sBnwa2bGZ7ywB/BPbOv7P5N+BXhUWWzlUZjgZOytMOB/6Qq54PB57LpX32AbbM0+cD38jL9wTGRsTGwH3AoRXicKVyM7NOUk/fs1s+VxgYBIwH7gSIiH9J+lMu5vpV4NqI+EBST+BsSaXEsk6hrYcj4jmAQpujq2x3XWAD4M7cAewBPF+Yf13+Pz63A6nneaKk1YDrIuLfkr4ADAPG5XaWJyVkgPeAkYV2diwPwpXKzcw6Tz0lu7cjYmjuvY0knbMr9dYuJvWS9gUOytN+ALwIbEzqob5TaOvdwu35NL+fAqZFxOZV5pfa+qidiLhM0kPArsDtkg7J7fwjIk6o0Mb7saBwYEvxmJlZB6u7YcyImAMcBRyThxgBLiQNIxIR0/K0PsDzEfEh8E1Sj6w9Hgf6S9oc0rCmpPWbW0HSp4EZEXEWabh1I+BuYO/cA0XSSpLWbGdMZmbWgeou2QFExARgEqknR0S8CDwK/L2w2J+B/SWNJQ1hvtnGzSwNvBsR7wF7A7+VNAmYSDov2Jx9gKl5iHQIcFFETCcVor1D0mTSMOyANsZkZmadQAtG1+qXpBWAKcCmuee3uO0tBYwDvlXoKdaNZQcMjgH7n1nrMMysi/m3MRePpPERMbzSvLrs2RVJ2gF4DPhjByW6VYGppKsj6y7RmZlZx1sienbdzfDhw6OpqanWYZiZLVGW6J6dmZnZ4nKyMzOzhudkZ2ZmDc9fbq5DrlRu1j35aszO456dmZk1PCc7MzNreE52ZmbW8GqW7AqVyaflOm8/zL9s0lnbm1dl+ok5hsk5ns/m6TMl9WtFu7d0dlV1MzNbPLW8QOXtXPeN/OPJl5F+3PmkZtfKJPWIiPmF+yJ9Sf7D1gaQf/x5N9LPkL2bk9vHWrluaXu7tHZ7ZmZWG3UxjBkRs4HDgCOVNFeF/F5JlwFT8nKPSvoz8AjwU0lnlNqVdKik05vZ9ADg5Yh4N8fxckTMKi4gaXlJt+W2yre3eqkHWJh3fu4p3iFp+dzGWrmN8Xm/hnTg4TMzsxbURbIDiIgZpHhWpvkq5COAEyNivXx/XVLVgU2A3wO7F0oDHcjClRLK3UFKWE9I+rOkz5fN7wXcBFwWEeeXby8inilbfjDwp4hYH3gd2CtPPw/4Xq6EfgypYsNCXKnczKzz1Nv37JT/L0PzVcifLtx/JiLGAkTEm5LuAXaT9CiwTERMqbaxiJgnaRiwNbAdcKWk4yPiwrzIP4HfRcSllbZXwdMRMTHfHg8MktSLVDLo6lzBHGDZCrG4UrmZWSepm2SXC6LOJ/XqTqJ6FfLyunXl9y8AfkyqlNBcrw6AfN5vFDBK0hRgf1KxWIAHgC9JuqxQaby5unnlFdKXz/G/Xjo/aWZmXa8uhjEl9QfOAc7OSaXdVcgj4iFgdeB/gctb2O66kgYXJg0FikOTPwNeocKwYxvieQN4WtLX8jYlaeP2tmdmZm1Xy2S3fOmrB8BdpPNnp+R5i1uF/CrggYh4rYXlegH/kDQ9VxdfDzi5bJmjgeUk/a6NMRR9Azg4V0KfBuyxGG2ZmVkbNWQ9O0kjgTMi4u5ax9IerlRu1j35tzEXT7epZyepr6QnSN/hWyITnZmZdby6uUClI0TE6yx85eYSacOBfWjyJzwzsw7TUD07MzOzSpzszMys4TnZmZlZw2uoc3aNwpXKrTvzFYnWGdyzMzOzhudkZ2ZmDc/JzszMGl6XJLvOrkperQp5lRgmFWvkdaZcf2+Lwv09Ja3X3DpmZtbxuqpn93ZEDM113nYEdqGVFckhVSXvwBg2Bk4ATm3D9tXO5LwtqbxPyZ6k3980M7Mu1OXDmBWqkveQdJqkcZImS/o2LFqVPE/bT9LDuYd2bnkSzBXDx0hq6XKu3sBreZ1eku7Ovb0pkvbI0ytVJZ8n6Ve5dzhW0ip52f6Srs37ME7SlpIGAYcDP8jxfh7YHTgt31+rQw6omZm1qCZfPYiIGbmntDKpAsCciNhM0rLAA5LuyIuOADaIiKclfYZUtXzLiHg/J6FvABcB5MRzI/CTiLizwmaXlzQRWA4YAGyfp78DfCUi3pDUDxgr6cY8b13gwIj4bt5GT2BsRJyYqyAcCvwS+APph6dHS1oDuD0iPiPpHGBeRPw+r38jMDIirikPTtJhpA8B9Ojdv+0H1czMqqrl9+xKZbt3AjaStHe+3wcYDLzHwlXJvwAMA8blit/Lkwq9QqpsfjdwRET8q8r23i4VUJW0OXCRpA1yHL+WtA3wITAQWCWvU16V/D1gZL49njQkC7ADsF6hEnlvSSu26ihkrlRuZtZ5apLsyqqSC/heRNxetsy2LFzHTsA/IuKECk1+QEo+XwSqJbuPRMSY3IvrTzp/2B8YlnuMM0m9P1i0jt77hYrl81lw/JYCNo+It8v2oaVQzMysC3T5ObsKVclvB74jaZk8f508XFjubmBvSSvn5VaStGaeF8BBwBBJx7cihiGk6uevkHqSs3Oi2w5Ys9mVK7sDOLLQ/tB8cy5Q7OGV3zczsy7QVcmuuarkFwDTgUckTQXOpUKPMyKmAz8B7shVxe8knXsrzZ8P7AtsJ+m7zcQwEbgS2D+vcykwXFIT6RzgY+3Yv6NyG5MlTSddmAJwE/CVvN2tgSuAYyVN8AUqZmZdpyErlS/pXKncujP/Nqa1V7epVG5mZlaJk52ZmTU8l/ipQxsO7EOTh3LMzDqMe3ZmZtbwnOzMzKzheRizDrlSuXVnvhrTOoN7dmZm1vCc7MzMrOE52ZmZWcNzsjMzs4bXYrKTND//tuOkXOB0i5bWaS9J8zqonQslPZ3jfkxSq6uim5lZ42lNz+7tiBgaERsDJwCnli9QXjG8Thyb69cNBfaX9KnyBWoVd67Q7l61mVkXaesbbm/gNUj15iTdK+kyYEqedoOk8ZKm5crb5OnzJP0q9w7H5qriSPqUpDGSxkn6RWF5STpN0lRJUyTtU9jmKEnX5B7bpWq5aNxCtekkzZT0M0mjga9JGppjmizpekkfl7SypPF5+Y0lRa5AjqSnJK2Qe49nSXpQ0oxC8VkkHZv3abKkU/K0QZIezRXWHwFWb+OxNzOzdmpNsiuVxnmMVI7nF4V5I4ATI2K9fP+giBgGDAeOkvSJPL0nMDb3Du8DDs3T/wD8JSI2A14otPtVUo9sY1IV8NMklcr5bAIcDawHfBrYskrcp+VyPs8BV0TE7MK8dyJiq4i4ArgI+L+I2IiUtE/Kyy4nqTewNdAEbJ3r582OiLdyOwOArYDdgN8ASNqJVGl9RN6HYbkKOsC6wEURsUlEPFMMVtJhkpokNc1/a06VXTIzs/ZoyzDmEGBn4KJCb+rhiHi6sOxRkiYBY0k9l8F5+nvAyHx7PDAo394SuDzfvrjQzlbA5RExPyJeJFUf36ywzeci4kNgYqGtcqVhzE8CXyg713glgKQ+QN+IKFU3/wdQSkwP5vi2AX6d/28N3F9o54aI+DDX2lslT9sp/00g9eCGFI7DMxExtlKwEXFeRAyPiOE9VuhTZZfMzKw92vQLKhExRlI/oH+e9GZpnqRtSb2wzSPiLUmjWDCE+H4sKJw3v2y7lQrqNTc0+W7hdnlblWKel2PZipTAFoq7GfeTktuawD+B/8uxjiwsU4xFhf+nRsS5xcYkDWrlds3MrIO16ZydpCFAD+CVCrP7AK/lRDcE+FwrmnyAVF0cUpXwkvuAfST1kNSf1Kt6uC2xFmJeGvgs8FT5vIiYA7yWq4gDfJPUiyzFsB/w79yLfBXYJcfcnNuBgyT1ytsfKGnl9sRuZmYdozU9u+XzuS9IvZb9I2J+hetCbgMOlzQZeJw0lNmS7wOXSfo+cG1h+vXA5sAkUm/quIh4ISfR1jpN0k+AjwF3A9dVWW5/4BxJKwAzgAMBImJm3sf78nKjgdUi4rXmNhoRd0j6DDAmrz+PlDTntyF2MzPrQFowumj1YtkBg2PA/mfWOgyzmvAPQVt7SRofEcMrzfN3vczMrOG5xE8dcqVyM7OO5Z6dmZk1PCc7MzNreE52ZmbW8HzOrg5N+e8cBh1/c63DMKsJX41pncE9OzMza3hOdmZm1vCc7MzMrOF1abIrVD2flmvb/bBUxFTScElnddB2ZuY6eFMkTZf0S0nLdkC7i1RSl7SqpGsWt20zM+s8XX2Bytu57A75x5EvI/2A9EkR0USqG9dRtouIl/MPMp+X//bvwPYBiIhZwN4tLmhmZjVTs2HMXCD1MODIXJl8W0kjASStlKueT85VxDfK00+W9LdcrXyGpKNasZ15wOHAnrndXpLulvRI7vntkds+rtSepDMk3ZNvf0HSJcU2JfVTqrC+a65APjVPP0DSdZJuk/RvSb/L03vkyualyus/6KjjaGZmLavpVw8iYkYexiwvgXMKMCEi9pS0Pama+NA8bwiwHbAi8Likv0TE+y1s5w1JT5OKqI4HvpKn9QPGSrqRVN3gR8BZpErry0pahlQH76OCrZJWAW4EfhIRd+Y6dUVDSdXU383x/THv38CI2CC30bc8RkmHkZI/PXr3L59tZmaLoR4uUKlUqHUrcuXyiLgH+ESuKg5wc0S8GxEvA7NZUCG8tdsR8OtciuguYGBuYzwwTNKKpEQ1hpT0itXJlyGVCzouIu6ssp27I2JORLwDTCcVf50BfFrSHyXtDLxRvpIrlZuZdZ6aJjtJnybVeZtdPqvC4qVaRG2qVJ63syIwCHiCVCS2PzAsnz98EVgu9w5nkurZPUhKcNsBawGP5qY+ICXFLzazuUXiyzXwNgZGAUcAF7QUs5mZdZyaJbtcgfwc4OxYtKjefeTK5ZK2BV6OiEV6Q63cTi/gz8ANOen0AWZHxPuStiP1vIrbPSb/v590rm9iIb4ADgKGSDq+DTH0A5aKiGuBnwKbtmdfzMysfbr6nF2p6vkypF7SxcDpFZY7Gfh7Hmp8i/ZdRXmvUqnwpUiVz3+Rp18K3CSpCZgIPFZY537gRGBMRLwp6R0K5+sAcpX2fXMbbwC3tCKWgXl/Sh8uTmjH/piZWTu5UnkdcqVy687825jWXq5UbmZm3ZqrHtQhVyo3M+tY7tmZmVnDc7IzM7OG52RnZmYNz+fs6pArlVt35qsxrTO4Z2dmZg3Pyc7MzBqek52ZmTW8miS75iqWd+I295S0XhvXOUDSSznW6ZIObcXyZy9epGZm1tFq1bN7OyKGRsT6wI7ALsBJnbzNPYE2JbvsylwdYVtSaaDWlhQyM7M6UfNhzAoVy5eT9NjJs5EAABCxSURBVPdc0XtCrkxQ6jXdIOkmSU9LOjL3CCfkauYr5eUOlTQu9xivlbSCpC2A3YHTci9trUrLtSLOp4A1JfXMFdPH5e3vUb58rmI+Jlc1XzNXR5+c/6/R0cfRzMyqq3myg1SxnBTLyqR6b0TEhsDXgX9IWi4vugHwv8AI4FfAWxGxCanQ6rfyMtdFxGYRsTGpDt3BEfEgqbr4sblH+VSl5ZqLMdfe+zTwJKkywj0RsRmp5t1pknoWlv0KcDywSy4yezZwUURsRKq6cFaF9g+T1CSpaf5bc1p/8MzMrEX19D27UsHWrYA/AkTEY5KeAdbJ8+6NiLnAXElzgJvy9CnARvn2BpJ+CfQFegG3V9lea5fbR9JWpKKs346IVyXtBOwu6Zi8zHJAqbe2HanC+U6FGnybA1/Nty8Gfle+kYg4DzgPUtWDKrGYmVk71EWyK6tYXqlKeUmxCviHhfsfsmBfLgT2jIhJkg4gnWurpLXLXRkRR5aHDOwVEY+X7cdngRmkHuA6QFOVNp3MzMy6UM2HMStULC9WKV+H1GN6vHoLi1gReF7SMqV2srl5XkvLtcbtwPdycVgkbVKY9wypF3eRpPXztAeBffPtbwCj27g9MzNbDLVKdsuXvnoA3AXcAZyS5/0Z6CFpCnAlcEBEvFulnUp+CjwE3MnCVcivAI7NF5Ss1cxyrfELUrX1yZKmsqAKOgC5x/cN4Oq8raOAA3Pl9W8C32/j9szMbDG4UnkdcqVy687825jWXq5UbmZm3ZqTnZmZNby6uBrTFrbhwD40eSjHzKzDuGdnZmYNz8nOzMwanocx65ArlVt35qsxrTO4Z2dmZg3Pyc7MzBqek52ZmTU8JzszM2t4dZ3sJM2rMG1mLuw6WdK/JK3ZinY+J+mh/Hucj0o6uVMCNjOzulTXya4Z2+VCqKOAn7Ri+X8Ah0XEUFIB2Ks6MTYzM6szS2qyKxkDDGzFcisDzwNExPyImA6Qe4h9lbwi6Vt5+sWSdpDUQ9JpksblnuS3Sw1KOrYw/ZQ87fDce5wo6WlJ90o6WNIZhfUOlXR6Bx4DMzNrwZKe7HYGbmjFcmcAj0u6XtK3JS2Xpz8AbAmsTyq6unWe/jlgLHAwMCciNgM2Aw6V9KlcqXwwMAIYCgyTtE1EnJN7j5sBzwGnk0oL7Z7r5gEcCPy9PEBJh0lqktQ0/605bTwMZmbWnCU12d0raTawA3BZSwtHxM+B4aS6ef8L3JZn3Q9sk//+AmwoaSDwakTMA3YCviVpIqn23SdISW6n/DcBeAQYkqeX/AG4JyJuiog3gXuA3SQNAZaJiCkVYjwvIoZHxPAeK/Rp29EwM7NmLanJbjtgTWAa8PPWrBART0XEX4AvABtL+gSpKvrW+W8U8BKwNykJAgj4XkQMzX+fiog78vRTC9PXjoi/Akg6IMd2SmHzFwAHUKVXZ2ZmnWtJTXZExNvA0aSe10rNLStpV0nKdwcD84HXI+I/QD9gcETMAEYDx7Ag2d0OfKc0BClpHUk98/SDJPXK0wdKWlnSsLz+fhHxYSHWh4DVSb3Kyztg983MrA3qNtlJWhp4N9+eWGmZiHielDyOyMvdImnVCot+k3TObiJwMfCNiJif5z0EPJFv30+64GV0vn8BMB14RNJU4Fxg6dy7uwwYI2kKcA2wInAksBJpmHWipAsKMVwFPBARr7XtSJiZ2eJSRNQ6hookbQycHxEjah1LR5A0EjgjIu5uadllBwyOAfuf2QVRmdUf/xC0tZek8RExvNK8uuzZSTqc1GNrzXfo6lr+asMTwNutSXRmZtbx6rZn150NHz48mpqaah2GmdkSZYnr2ZmZmXUkJzszM2t4TnZmZtbwlq51ALaoKf+dw6Djb651GGY14asxrTO4Z2dmZg3Pyc7MzBqek52ZmTW8Lj9nl3+AufTl6k+SfqfypXx/RES818p2lgZejoi+ixHLc8AGEfF6e9swM7P61+XJLiJeIdWAQ9LJwLyI+H1nb1fS0hHxQWdvx8zM6k9dDWNKuknSeEnTJB2Sp31b0mmFZb4j6Xdl6y0l6XRJU3P18b3z9B0k3SXpClLtudbE0EvShZIeljRB0pfz9DskrZdvT5H043z7VEkHSOot6R5Jj+Tq5bvl+WvnuP6a9+vWQvFYMzPrAvX21YP9I+JVSSsATZKuJVUXmCjphNwzO5BUG67oa8B6wMZAf2CcpPvyvM8B60XEs62M4WfAbRFxgKSPAw9JupNc+07S88A7wFZ5+a1I1RHeBvaIiLmSViZVQR+Zl1kX+HpETJF0HbAnqYL5RyQdBhwG0KN3/1aGamZmrVFXPTvgB5ImAWOA1YC1ImIuKdF8SdL6wPyImF623lbAZRExPyJeIJXoKf0+2pg2JDpIFchPzOWA7gWWA9ZgQVXzrYF/Ah/PSXlgRDxFKuj6W0mTSRXRV5fUL7f5ZKE6+XhgUPlGXanczKzz1E3PTtIOpGTyuYh4W9JoUqKB1HP6ITCTypW+VWFayZttDQXYMyewYnzP5jhmATeRkvGhwMN5kW8BfYBNI+KDfPFLKf53C03Np46Ou5lZd1BPPbs+wKs50a0PbFaaEREPAGuRhiuvrLDufcC+knpIWgXYEmhv2YDbgaNKdyRtkmN4B3iRNAT5EKmnV6xq3geYnRPdjqQisGZmVgfqqYdxM3BYHsZ8jJRQiq4BhkTEnArrXkM6NzcJCOCHETFbaq7D95Fpkkp1ji4DTgHOzBXIlwKeBPbI8+8HtoyIdyXdT+rdlZLdxcBNkpqAR4B/t2bjZmbW+ZaYenaSbgNOjYh/1TqWzuZK5dad+bcxrb2W6Hp2kj6RK32/1h0SnZmZdbx6GsasKH8JfZ1ax9GVNhzYhyZ/ujUz6zB137MzMzNbXE52ZmbW8JzszMys4dX9ObvuyJXKrTvz1ZjWGdyzMzOzhudkZ2ZmDc/JzszMGl6XJztJn5R0haSnJE2XdIukVn+PLtea27uVy+4h6YbC/RMkPVm4/2VJN7bQxihJw/PtmYVKBmZmtoTo0mSn9GOV1wOjImKtiFgP+DGwSidt8kFg88L9zYE3cr05gC1IdefMzKyBdXXPbjvg/Yg4pzQhIiZGxP1KTitUG98HUoKUdHbuBd4MrJynf0HS9aV2JO2YC6NSaPslYI6ktfOkgcC1pCRH/v9gXv8vkppyNfFTWtoRSTcUqqofVpi+c65WPknS3XlaT0l/kzQuVz/fo3rLZmbW0br6qwcbkIqXVvJVYCip2ng/FlQb35xU6XtDUg9wOvA34B7gT5L656R2IJVr3T0IbCGpB6kSwVjgi5JGAhsB4/JyJ+Yq6T2AuyVtFBGTm9mXg/Lyy+dYryV9eDgf2CYinpa0Uqlt4J6IOEhSX+BhSXdFxEe19lyp3Mys89TTBSpbAZfnauMvAv8i1bTbpjB9FinJEalcw8XAfjmBbA7cWqHdB0g9uC1IFdAfBj4LbAI8nuvUAfyPpEeACcD6wHotxHtULkc0FlgdGEwqM3RfRDydY3w1L7sTcHyufj6KBdXPP+JK5WZmnaere3bTgGoXlzRXfK5aHaK/k6qGvwNcHREfVFjmQeB7QA/g/IiYK2k5YFvy+TpJnyIVYt0sIl6TdCELqowvGqi0LbADsHlEvCVpVF5eVWIVsFdEPN7MPpqZWSfp6p7dPcCykg4tTZC0maTPk6qN75Orjfcn9egeZuEq5ANI5/0AyD29WcBPgAurbHM6sCqwNanXBjAROJx8vg7oDbxJOr+3CvClFvajD6nk0FuShpB6dJB6jp/PyZPCMObtwPfyBTofVT83M7Ou0aU9u4gISV8hVQI/ntQjmwkcTUpqm7Og2vhxEfFCvghle2AK8ARpeLPoUqB/RExvZpsPAX0i4v08eQzp/NiDeZlJkiaQep4zaPkKzduAwyVNBh4nDWUSES/lc2/XSVoKmA3sCPwCOBOYnBPeTGC3FrZhZmYdZImpVF6NpLOBCRHx11rH0lFcqdy6M/82prVXc5XKl+gfgpY0njT8+KNax2JmZvVriU52ETGs1jGYmVn9W6KTXaPacGAfmjyUY2bWYerpe3ZmZmadwsnOzMwanocx65ArlVt35qsxrTO4Z2dmZg3Pyc7MzBqek52ZmTW8bpHsJJ0h6ejC/dslXVC4//8k/VDSqpKuydO2zWWAkHRA/qWW8nYXmV5W2fyWXJEBSfPy/0GSpnbGfpqZWWXdItmRa9oB5N+s7Ecq41OyBfBARMyKiGpVGdosInaJiNc7qj0zM2uf7pLsSjXtICW5qcBcSR+XtCzwGWBCR/e6JM2U1K+j2jMzs/bpFl89iIhZkj6QtAYLirgOJFVZmANMjoj3cgWettpH0laF+2svdsBmZtahukWyy4oVy08nJbstSMnuwWbWa8mVEXFk6U4u5NpmuTTQYQA9evdfjHDMzKxcdxnGhAXn7TYkDWOOJfXstqDl+nWdLiLOi4jhETG8xwp9ah2OmVlD6U7J7gFSwdRXI2J+RLwK9CUlvDE1jczMzDpVd0p2U0hXYY4tmzYnIl6uTUhmZtYVlvhK5Y3IlcqtO/NvY1p7NVepvDv17MzMrJtysjMzs4bXnb56sMRwpXIzs47lnp2ZmTU8JzszM2t4TnZmZtbwnOzMzKzhOdmZmVnDc7IzM7OG52RnZmYNz8nOzMwanpOdmZk1PP8QdB2SNBd4vNZx1FA/oDtXovD+d9/97877Dou//2tGRMXq1/65sPr0eLVf7u4OJDV5/73/tY6jFrrzvkPn7r+HMc3MrOE52ZmZWcNzsqtP59U6gBrz/ndv3Xn/u/O+Qyfuvy9QMTOzhueenZmZNTwnOzMza3hOdnVG0s6SHpf0pKTjax1PV5L0N0mzJU2tdSxdTdLqku6V9KikaZK+X+uYupKk5SQ9LGlS3v9Tah1TLUjqIWmCpJG1jqWrSZopaYqkiZKaOrx9n7OrH5J6AE8AOwLPAeOAr0fE9JoG1kUkbQPMAy6KiA1qHU9XkjQAGBARj0haERgP7NmNHnsBPSNinqRlgNHA9yNibI1D61KSfggMB3pHxG61jqcrSZoJDI+ITvlSvXt29WUE8GREzIiI94ArgD1qHFOXiYj7gFdrHUctRMTzEfFIvj0XeBQYWNuouk4k8/LdZfJft/okLmk1YFfgglrH0oic7OrLQOA/hfvP0Y3e8CyRNAjYBHiotpF0rTyENxGYDdwZEd1q/4EzgeOAD2sdSI0EcIek8ZIO6+jGnezqiypM61afbrs7Sb2Aa4GjI+KNWsfTlSJifkQMBVYDRkjqNkPZknYDZkfE+FrHUkNbRsSmwJeAI/JpjQ7jZFdfngNWL9xfDZhVo1isi+VzVdcCl0bEdbWOp1Yi4nVgFLBzjUPpSlsCu+fzVlcA20u6pLYhda2ImJX/zwauJ53W6TBOdvVlHDBY0qckfQzYF7ixxjFZF8gXaPwVeDQiTq91PF1NUn9JffPt5YEdgMdqG1XXiYgTImK1iBhEet3fExH71TisLiOpZ74wC0k9gZ2ADr0q28mujkTEB8CRwO2kCxSuiohptY2q60i6HBgDrCvpOUkH1zqmLrQl8E3SJ/qJ+W+XWgfVhQYA90qaTPrQd2dEdLvL77uxVYDRkiYBDwM3R8RtHbkBf/XAzMwannt2ZmbW8JzszMys4TnZmZlZw3OyMzOzhudkZ2ZmDc/JzszMGp6TnZmZNbz/D79dkgXEuTh7AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.barh(y = df_jug_categ.index[10::-1],\n",
" #loc no funciona con índices enteros\n",
" #es por eso que se complica la expresión\n",
" width = df_jug_categ.loc[df_jug_categ.index[10::-1], '+'.join(categorias)])\n",
"plt.title(f'Faltas acumuladas dentro de las categorias {\"+\".join(categorias)}')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" PF | \n",
" UR | \n",
" UC | \n",
" PF+UR+UC | \n",
"
\n",
" \n",
" Year | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 2015 | \n",
" 0 | \n",
" 29 | \n",
" 0 | \n",
" 29 | \n",
"
\n",
" \n",
" 2016 | \n",
" 0 | \n",
" 25 | \n",
" 0 | \n",
" 25 | \n",
"
\n",
" \n",
" 2018 | \n",
" 0 | \n",
" 17 | \n",
" 0 | \n",
" 17 | \n",
"
\n",
" \n",
" 2019 | \n",
" 0 | \n",
" 15 | \n",
" 0 | \n",
" 15 | \n",
"
\n",
" \n",
" 2017 | \n",
" 0 | \n",
" 11 | \n",
" 0 | \n",
" 11 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PF UR UC PF+UR+UC\n",
"Year \n",
"2015 0 29 0 29\n",
"2016 0 25 0 25\n",
"2018 0 17 0 17\n",
"2019 0 15 0 15\n",
"2017 0 11 0 11"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Años con más amonestaciones dentro\n",
"#de cierta categoría\n",
"#PF = Personal Foul\n",
"#UR = Unnecessary Roughness\n",
"#UC = Unsportsmanlike Conduct\n",
"gr_year = df_penal.groupby('Year')\n",
"categorias = ['PF', 'UR', 'UC']\n",
"str_categ = '+'.join(categorias)\n",
"df_year_categ = gr_year.sum()[categorias]\n",
"df_year_categ[str_categ] = df_year_categ.sum(axis = 1)\n",
"df_year_categ.sort_values(by = str_categ, ascending = False, inplace = True)\n",
"df_year_categ"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}